Announcements

HW2

- Out tonight
- Due Mon 2/28

Assignment schedule

• Draft deadlines on course website

Graphs

Start on text processing if time

15-388/688 - Practical Data Science: Graph and network processing

Pat Virtue Carnegie Mellon University Spring 2022

Slide credits: CMU AI, Zico Kolter

Outline

Networks and graph

Representing graphs

Graph algorithms

Graph libraries

Outline

Networks and graph

Representing graphs

Graph algorithms

Graph libraries

Networks vs. graphs?

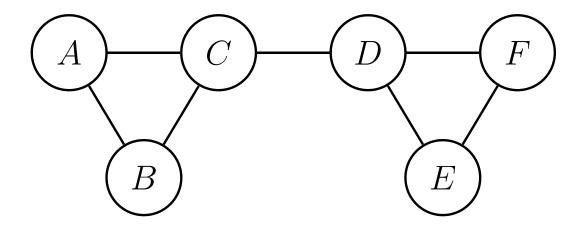
Our terminology (fairly standard, though some use them differently): Networks are the systems of interrelated objects (in the real world) Graphs are the mathematical model for representing networks

This lecture is largely about representations and algorithms for graphs

But of course, in data science we use these algorithms to answer questions about networks

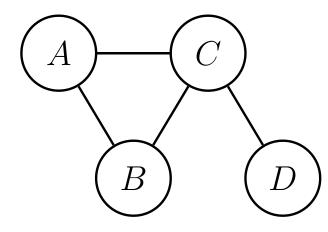
Graphs models

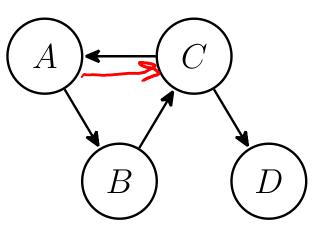
A graph is a collection of vertices (nodes) and edges G = (V, E)



 $V = \{A, B, C, D, E, F\}$ E = {(A, B), (A, C), (B, C), (C, D), (D, E), (D, F), (E, F)}

Directed vs. undirected graphs





Undirected E.g. paper co-authorship

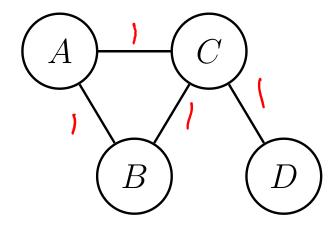
Directed E.g. web links

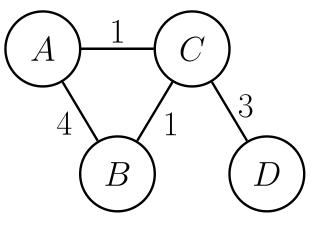
Poll 1

For a network of roads in a city/state, should the graph be:

- A. Undirected
- B. Directed

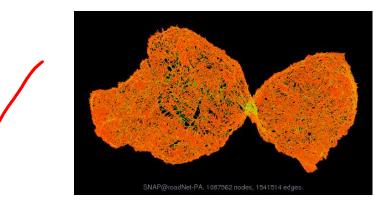
Weighted vs. unweighted graphs



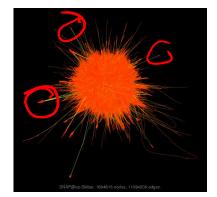


Weighted E.g. travel distance between cities

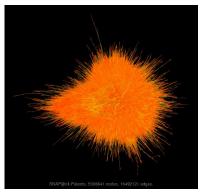
Some example graphs



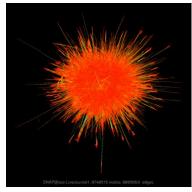
PA road network: 1M nodes, 3M edges



Internet topology (in 2005) 1.6M nodes, 11M edges



Patent citations: 3.7M nodes, 16.5M edges



LiveJournal social network 4.8M nodes, 69M edges

Graphs from http://snap.stanford.edu, visualizations from http://www.cise.ufl.edu/research/sparse/matrices/SNAP/

Outline

Networks and graph

Representing graphs

Graph algorithms

Graph libraries

Representations of graphs

There are a few different ways that graphs can be represented in a program, which one you choose depends on your use case

E.g., are you going to be modifying the graph dynamically (adding/removing nodes/edges), just analyzing a static graph, etc?

Three main types we will consider:

- 1. Adjacency list
- 2. Adjacency dictionary
- 3. Adjacency matrix

Adjacency list

Node

А

В

С

D

Edges

[B]

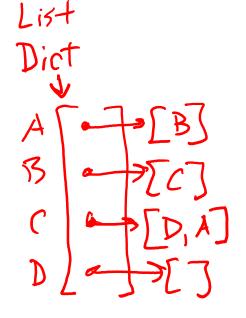
[C]

[A,D]

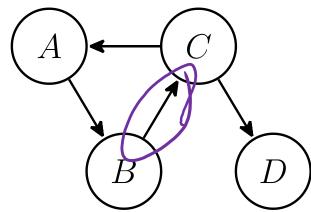
For each node, store an array of the nodes that it connects to

Pros: easy to get all outgoing links from a given node, fast to add new edges (without checking for duplicates)

Cons: deleting edges or checking existence of an edge requires scan through given node's full adjacency array

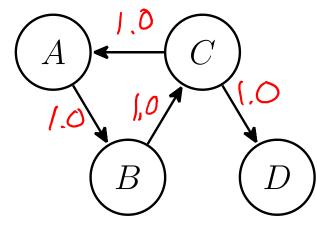


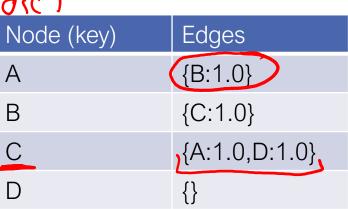
order not sor



Adjacency dictionary

For each node, store a dictionary of the nodes that it connects to





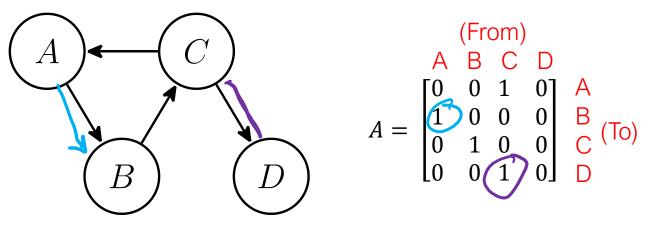
Pros: easy to add/remove/query edges (requires two dictionary lookups, so a O(1) operation)

Cons: overhead of using a dictionary over array

Dict (Set, unwright)

Adjacency matrix

Store the connectivity of the graph as a matrix



In virtually all cases, you will want to store this as a sparse matrix

Pros/cons depend on which sparse matrix format you use, but most operations on a static graph will but much faster using the right format

Connection between adjacency list and sparse CSC format

Outline

Networks and graph

Representing graphs

Graph algorithms

Graph libraries

Graph algorithms

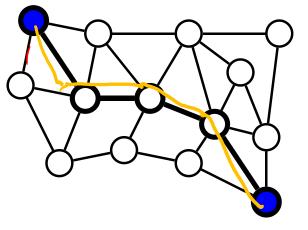
Algorithms for graphs could be (in fact, is) an entire course on its own

We're going to briefly highlight just three algorithms that address different problem classes in graphs

- 1. Finding shortest paths in a graph Dijkstra's algorithm
- 2. Finding important nodes in a graph PageRank
- 3. Finding communities in a graph Girvan-Newman

Shortest path problem

Classical graph problem: find the shortest path between two nodes



Some important distinctions or modifications

Weighted vs. unweighted, directed vs. undirected, negative weights
 Single-source shortest path (we'll do this one)
 All-pairs shortest path

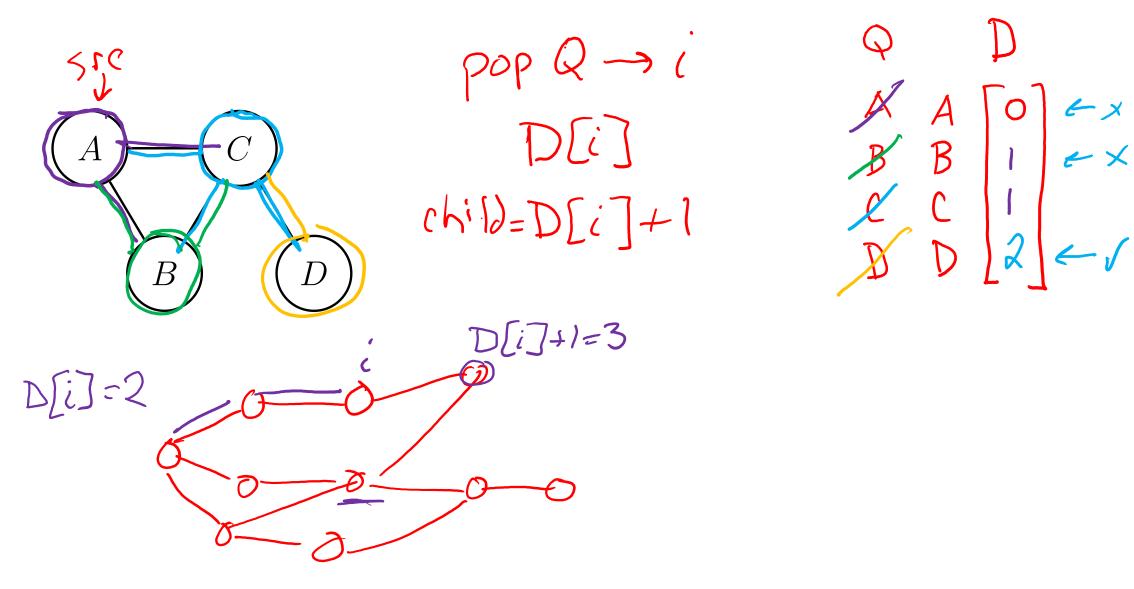
Dijkstra's algorithm

Algorithm for single-source shortest path

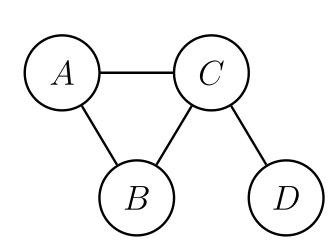
Basic idea: dynamic programming algorithm, at each node maintain an *upper bound* on distance to source, iteratively expand node with smallest upper bound (updating bounds of its neighbors)

Given: Graph G = (V, E), Source *s* **Initialize:** $D[s] \leftarrow 0, D[i \neq s] \leftarrow \infty$ $Q \leftarrow V$ **Repeat** until *Q* empty: $i \leftarrow$ Remove element from *Q* with smallest *D* For all *j* such that $(i, j) \in E$: $D[j] = \min(D[j], D[i] + 1)$

Dijkstra's algorithm example



Dijkstra's algorithm example



Initialization: source A $D = [0, \infty, \infty, \infty]$ $Q = \{A, B, C, D\}$ Step 1: Pop node A $Q = \{B, C, D\}$ $D = [0, 1, 1, \infty]$ Step 2: Pop node B $Q = \{C, D\}$ $D = [0, 1, 1, \infty]$ Step 3: Pop node C $Q = \{D\}$ D = [0,1,1,2]Step 4: Pop node D $Q = \{ \}$ D = [0,1,1,2]

"Important" nodes

What are the important nodes in the following network?

Unlike shortest path, there is not correct answer here, depends on how you define importance

PageRank algorithm

The algorithm that started Google

Perspective on importance: consider a *random walk* on the graph We start at a random node We repeatedly jump to a random neighboring node If the node has no outgoing edges (in directed graph), jump to a random node (Optionally) also jump to a random node with probability (1 - d)*Note*: In other words, *d* is the probability of continuing, i.e., the *damping factor*

Node importance is the probability that we will be at a given node when following the above procedure

PageRank algorithm

Given: Graph G = (V, E), restart probability (1 - d), iteration count T

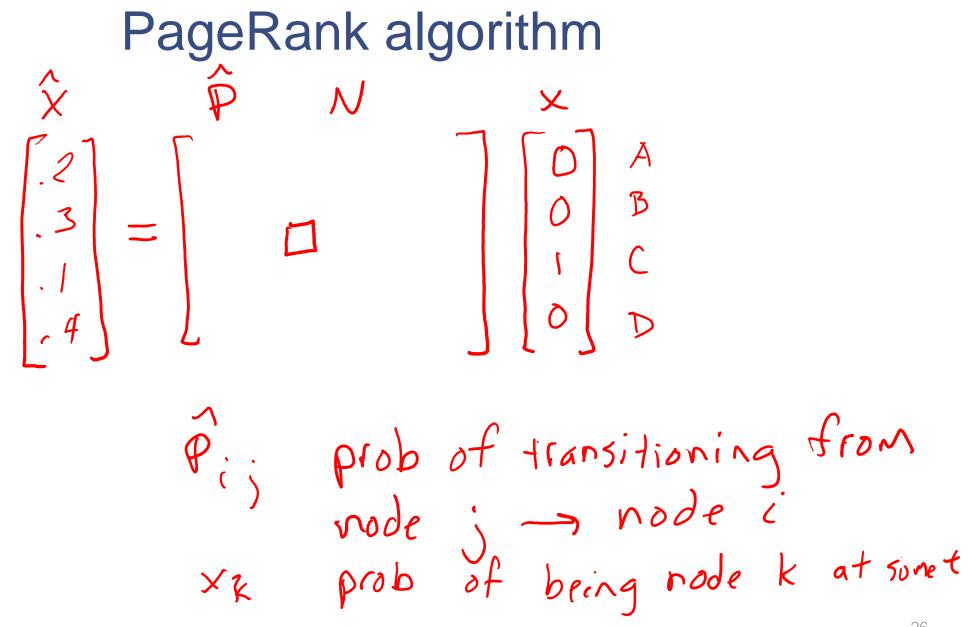
Let \hat{P} be an $|V| \times |V|$ matrix where $\hat{P}_{i,j}$ is the probability of transitioning from node j to node i for one step in the random walk algorithm.

Let x be a length |V| vector where x_k is the probability of being at node k at some time step.

Repeat *T* times: $x \leftarrow \hat{P}x$

For those who have heard these terms, this algorithm is creating a Markov chain over the graph, and finding the stationary distribution (largest eigenvector) of this Markov chain

25

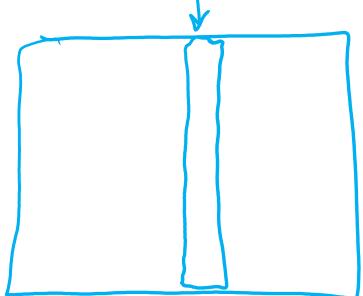


Poll 2

 \hat{P}_{ij} is the probability of transitioning from node j to node i in a random walk. Which of the following must be true

A.
$$\bigvee_{i=1}^{N} \hat{P}_{i,j} = | \forall j$$

B. $\bigvee_{i=1}^{N} \hat{P}_{i,j} = | \forall i$
 $\bigvee_{j=1}^{N} \hat{P}_{i,j} = | \forall i$
 $\int_{i=1}^{N} \bigotimes_{j=1}^{N} \hat{P}_{i,j} = | = | = N$

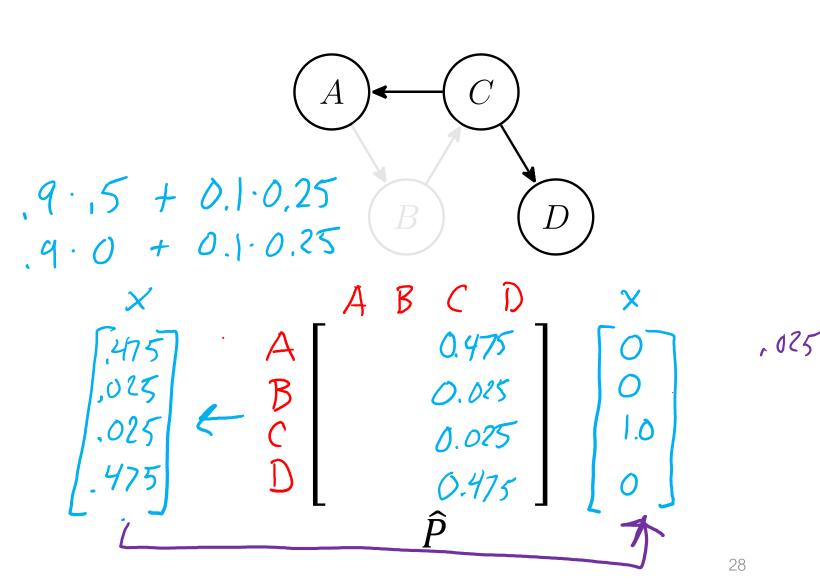


PageRank algorithm

Given: Graph G = (V, E), restart probability (1 - d)

Let \hat{P} be an $|V| \times |V|$ matrix where $\hat{P}_{i,j}$ is the probability of transitioning from node *j* to node *i* for one step in the random walk algorithm.

Let x be a length |V| vector where x_k is the probability of being at node k at some time step.



PageRank algorithm

Given: Graph G = (V, E), restart probability (1 - d), iteration count T **Initialize:**

 $A \leftarrow \text{Adjacency}_Matrix(G)$ $P \leftarrow \text{replace zero columns of } A \text{ with } \mathbf{1}, \text{ and normalize columns}$ $\hat{P} \leftarrow dP + (1 - d) \frac{1}{|V|} \mathbf{11}^T$ $x \leftarrow \frac{1}{|V|} \mathbf{1}$ $\mathbf{12}^T$ $\begin{bmatrix} I \\ I \\ I \end{bmatrix} \begin{bmatrix} I \\ I \end{bmatrix} \begin{bmatrix}$

For those who have heard these terms, this algorithm is creating a Markov chain over the graph, and finding the stationary distribution (largest eigenvector) of this Markov chain

PageRank example

 $A \leftarrow \text{Adjacency}_\text{Matrix}(G)$ $P \leftarrow$ replace zero columns of A with **1**, and normalize columns $\hat{P} \leftarrow dP + (1 - d) \frac{1}{|V|} \mathbf{1} \mathbf{1}^T$ Initialize: $x \leftarrow \frac{1}{|V|} \mathbf{1}$ $d = 0.9 \qquad A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ **Repeat** *T* times: $x \leftarrow \hat{P}x$ $P = \begin{bmatrix} 0 & 0 & 0.5 & 0.25 \\ 1 & 0 & 0 & 0.25 \\ 0 & 1 & 0 & 0.25 \\ 0 & 0 & 0 & 5 & 0.25 \end{bmatrix}$ $\begin{array}{c} \mathbf{Y} \\ x = \begin{bmatrix} 0.25 \\ 0.25 \\ 0.25 \end{bmatrix} \rightarrow \rightarrow \rightarrow \rightarrow \end{array}$ 0.21 0.26 0.31 0.21 0.25 $\hat{P} = 0.9 \begin{bmatrix} 0 & 0 & 0.5 & 0.25 \\ 1 & 0 & 0 & 0.25 \\ 0 & 1 & 0 & 0.25 \end{bmatrix} + 0.1 \begin{bmatrix} 0.25 \\ 0.25 \\ 0.25 \end{bmatrix}$ 0.25 0.25 0.25] 0.025 0.025 0.475 0.25 0.25 0.25 0.925 0.025 0.025 0.25 0.25 0.25 0.025 0.925 0.025 0.25 0.5 10.250.25 0.25 0.25 L0.025 0.025 0.475

B

0.25]

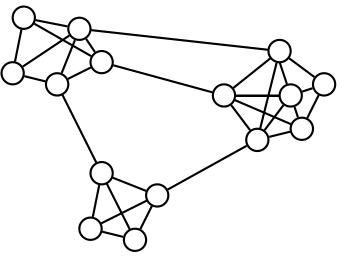
0.25

0.25

0.25

Community detection

Community: subgraphs where nodes are densely connected to each other, but sparsely connected to other nodes



A "soft" version of a clique (a fully connected subgraph)

A fundamental concept in e.g. social networks

Girvan-Newman Algorithm

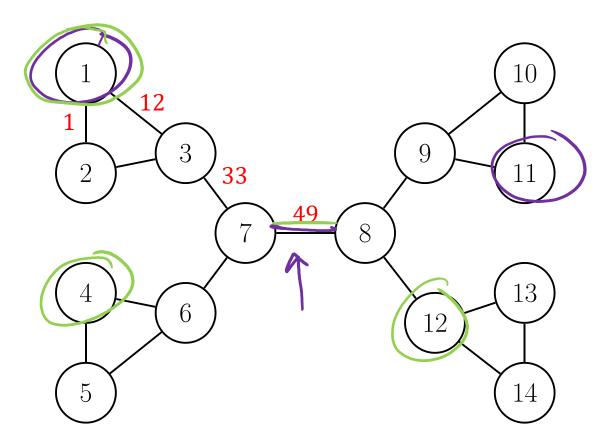
Published in 2002 (Girvan and Newman, 2002), one of the first methods of "modern" community detection

Basic idea: Recursively partition the network by removing edges, groups that are last to be partitioned are "communities"

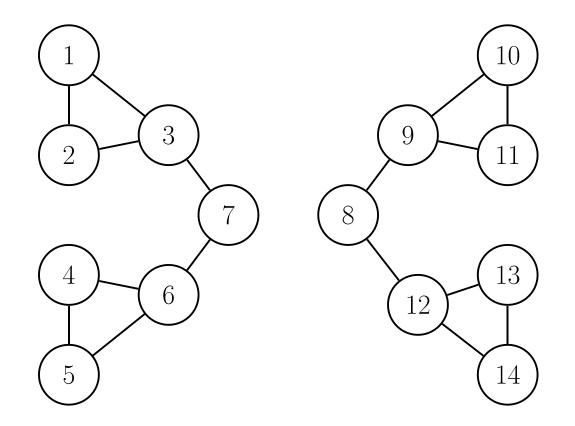
- 1. Compute "betweenness" of edges in the network = number of shortest paths that pass through each edge
- 2. Remove edge(s) with highest betweenness, if this breaks the graph into subgraphs, recursively partition each one
- 3. Result is a hierarchical partitioning of the graph

Challenge is efficiently computing betweenness as we partition graph (we will not cover this)

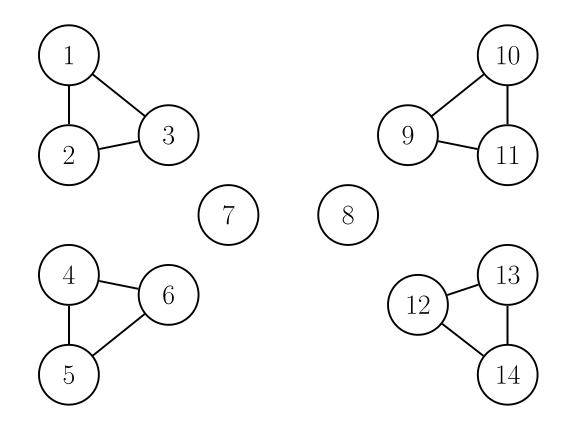
Algorithmic illustration



Algorithmic illustration



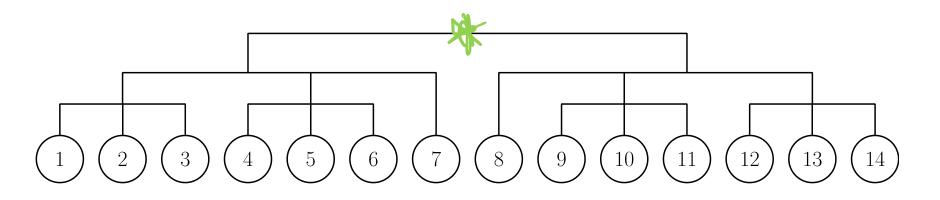
Algorithmic illustration



Resulting hierarchy (dendrogram)

Communities can be extracted by looking at the grouping at different levels of the tree

May want to threshold on things like community size, etc



Outline

Networks and graph

Representing graphs

Graph algorithms

Graph libraries

NetworkX

NetworkX: Python library for dealing with (medium-sized) graphs

https://networkx.github.io/

Simple Python interface for constructing graph, querying information about the graph, and running a large suite of algorithms

Not suitable for very large graphs (all native Python, using adjacency dictionary representation)

Creating graphs

Create an undirected or directed graph

import networkx as nx

G = nx.Graph() # undirected graph
G = nx.DiGraph() # directed graph

Add and remove nodes/edges

```
# add and remove edges
G.add_edges_from([("A", "B"), ("B", "C"), ("C", "A"), ("C", "D")])
G.remove_edge("A", "B")
G.add_edge("A", "B")
G.remove_edges_from([("A", "B"), ("B", "C")])
G.add_edges_from([("A", "B"), ("B", "C")])
# also add_node(), remove_node(), add_nodes_form(), remove_nodes_from()
```

Nodes/edges and properties

NetworkX uses adjacency dictionary format internally

print G["C"]
{'A': {}, 'D': {}}

Iterate over nodes and edges

for i in G.nodes(): # loop over nodes
 print i
for i,j in G.edges(): # loop over edges
 print i,j

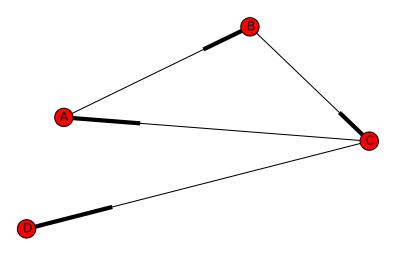
Get and set node/edge properties

```
G.node["A"]["node_property"] = "node_value"
G.edge["A"]["B"]["edge_property"] = "edge_value"
G.nodes(data=True) # iterator over nodes returning properties
G.edges(data=True) # iterator over edges returning properties
```

Drawing and node properties

Draw a graph using matplotlib (not the best visualization)

import matplotlib.pyplot as plt
%matplotlib inline
nx.draw(G,with_labels=True)
plt.savefig("mpl_graph.pdf")



Algorithms

Almost all the (medium scale) algorithms you could want

```
nx.shortest_path_length(G,source="A") # iterater over path lengths
```

```
nx.pagerank(G,alpha=0.9) # dictionary of node ranks
```