
Announcements

HW2

• Out tonight

• Due Mon 2/28

Assignment schedule

• Draft deadlines on course website

1

Plan

Graphs

Start on text processing if time

2

15-388/688 - Practical Data Science:

Graph and network processing

Pat Virtue

Carnegie Mellon University

Spring 2022

3Slide credits: CMU AI, Zico Kolter

Outline

Networks and graph

Representing graphs

Graph algorithms

Graph libraries

4

Outline

Networks and graph

Representing graphs

Graph algorithms

Graph libraries

5

Networks vs. graphs?

Our terminology (fairly standard, though some use them differently):

Networks are the systems of interrelated objects (in the real world)

Graphs are the mathematical model for representing networks

This lecture is largely about representations and algorithms for graphs

But of course, in data science we use these algorithms to answer questions about

networks

6

Graphs models

A graph is a collection of vertices (nodes) and edges 𝐺 = (𝑉, 𝐸)

𝑉 = 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹
𝐸 = 𝐴, 𝐵 , 𝐴, 𝐶 , 𝐵, 𝐶 , 𝐶, 𝐷 , 𝐷, 𝐸 , 𝐷, 𝐹 , 𝐸, 𝐹

7

Directed vs. undirected graphs

8

Undirected

E.g. paper co-authorship
Directed

E.g. web links

Poll 1

For a network of roads in a city/state, should the graph be:

A. Undirected

B. Directed

9

Weighted vs. unweighted graphs

10

Unweighted

E.g. friends on

social network

Weighted

E.g. travel distance

between cities

Some example graphs

11

PA road network:

1M nodes, 3M edges

Patent citations:

3.7M nodes, 16.5M edges

Internet topology (in 2005)

1.6M nodes, 11M edges

LiveJournal social network

4.8M nodes, 69M edges

Graphs from http://snap.stanford.edu, visualizations from http://www.cise.ufl.edu/research/sparse/matrices/SNAP/

http://snap.stanford.edu/
http://www.cise.ufl.edu/research/sparse/matrices/SNAP/

Outline

Networks and graph

Representing graphs

Graph algorithms

Graph libraries

12

Representations of graphs

There are a few different ways that graphs can be represented in a program, which

one you choose depends on your use case

E.g., are you going to be modifying the graph dynamically (adding/removing

nodes/edges), just analyzing a static graph, etc?

Three main types we will consider:

1. Adjacency list

2. Adjacency dictionary

3. Adjacency matrix

13

Adjacency list

For each node, store an array of the nodes that it connects to

Pros: easy to get all outgoing links from a given node, fast to add new edges

(without checking for duplicates)

Cons: deleting edges or checking existence of an edge requires scan through

given node’s full adjacency array
14

Node Edges

A [B]

B [C]

C [A,D]

D []

Adjacency dictionary

For each node, store a dictionary of the nodes that it connects to

Pros: easy to add/remove/query edges (requires two dictionary lookups, so a 𝑂(1)
operation)

Cons: overhead of using a dictionary over array

15

Node (key) Edges

A {B:1.0}

B {C:1.0}

C {A:1.0,D:1.0}

D {}

Adjacency matrix

Store the connectivity of the graph as a matrix

In virtually all cases, you will want to store this as a sparse matrix

Pros/cons depend on which sparse matrix format you use, but most operations on a static
graph will but much faster using the right format

Connection between adjacency list and sparse CSC format

16

𝐴 =

0 0
1 0
0 1
0 0

1 0
0 0
0 0
1 0

(From)

A B C D
A

B

C

D

(To)

Outline

Networks and graph

Representing graphs

Graph algorithms

Graph libraries

17

Graph algorithms

Algorithms for graphs could be (in fact, is) an entire course on its own

We’re going to briefly highlight just three algorithms that address different problem

classes in graphs

1. Finding shortest paths in a graph – Dijkstra’s algorithm

2. Finding important nodes in a graph – PageRank

3. Finding communities in a graph – Girvan-Newman

18

Shortest path problem

Classical graph problem: find the shortest path between two nodes

Some important distinctions or modifications

Weighted vs. unweighted, directed vs. undirected, negative weights

Single-source shortest path (we’ll do this one)

All-pairs shortest path

19

Dijkstra’s algorithm

Algorithm for single-source shortest path

Basic idea: dynamic programming algorithm, at each node maintain an upper

bound on distance to source, iteratively expand node with smallest upper bound

(updating bounds of its neighbors)

20

Given: Graph 𝐺 = (𝑉, 𝐸), Source 𝑠
Initialize:

𝐷 𝑠 ← 0, 𝐷 𝑖 ≠ 𝑠 ← ∞
𝑄 ← 𝑉

Repeat until 𝑄 empty:

𝑖 ← Remove element from 𝑄 with smallest 𝐷
For all 𝑗 such that 𝑖, 𝑗 ∈ 𝐸:

𝐷 𝑗 = min 𝐷 𝑗 , 𝐷 𝑖 + 1

Dijkstra’s algorithm example

21

Dijkstra’s algorithm example

Initialization: source 𝐴
𝐷 = 0,∞,∞,∞
𝑄 = 𝐴, 𝐵, 𝐶, 𝐷

Step 1: Pop node A
𝑄 = 𝐵, 𝐶, 𝐷
𝐷 = 0,1,1,∞

Step 2: Pop node 𝐵
𝑄 = 𝐶,𝐷
𝐷 = 0,1,1,∞

Step 3: Pop node 𝐶
𝑄 = 𝐷
𝐷 = 0,1,1,2

Step 4: Pop node 𝐷
𝑄 =
𝐷 = [0,1,1,2]

22

“Important” nodes

What are the important nodes in the following network?

Unlike shortest path, there is not correct answer here, depends on how you define

importance

23

PageRank algorithm

The algorithm that started Google

Perspective on importance: consider a random walk on the graph

We start at a random node

We repeatedly jump to a random neighboring node

If the node has no outgoing edges (in directed graph), jump to a random node

(Optionally) also jump to a random node with probability 1 − 𝑑

Note: In other words, 𝑑 is the probability of continuing, i.e., the damping factor

Node importance is the probability that we will be at a given node when following

the above procedure

24

PageRank algorithm

For those who have heard these terms, this algorithm is creating a Markov chain

over the graph, and finding the stationary distribution (largest eigenvector) of this

Markov chain 25

Given: Graph 𝐺 = 𝑉, 𝐸 , restart probability 1 − 𝑑 , iteration count 𝑇

Let ෠𝑃 be an 𝑉 × 𝑉 matrix where ෠𝑃𝑖,𝑗 is the probability of

transitioning from node 𝑗 to node 𝑖 for one step in the random walk

algorithm.

Let 𝑥 be a length |𝑉| vector where 𝑥𝑘 is the probability of being at

node 𝑘 at some time step.

Repeat 𝑇 times:

𝑥 ← ෠𝑃𝑥

PageRank algorithm

26

Poll 2

෠𝑃𝑖𝑗 is the probability of transitioning from node j to node i in a random walk. Which

of the following must be true

A.

B.

C.

27

PageRank algorithm

28

Given: Graph 𝐺 = 𝑉, 𝐸 ,

restart probability 1 − 𝑑

Let ෠𝑃 be an 𝑉 × 𝑉 matrix

where ෠𝑃𝑖,𝑗 is the probability of

transitioning from node 𝑗 to

node 𝑖 for one step in the

random walk algorithm.

Let 𝑥 be a length |𝑉| vector

where 𝑥𝑘 is the probability of

being at node 𝑘 at some time

step.

0 0
1 0
0 1
0 0

1 0
0 0
0 0
1 0
෠𝑃

PageRank algorithm

For those who have heard these terms, this algorithm is creating a Markov chain

over the graph, and finding the stationary distribution (largest eigenvector) of this

Markov chain
29

Given: Graph 𝐺 = 𝑉, 𝐸 , restart probability 1 − 𝑑 , iteration count 𝑇
Initialize:

𝐴 ← Adjacency_Matrix 𝐺
𝑃 ← replace zero columns of 𝐴 with 𝟏, and normalize columns

෠𝑃 ← 𝑑𝑃 + (1 − 𝑑)
1

𝑉
𝟏𝟏𝑇

𝑥 ←
1

|𝑉|
𝟏

Repeat 𝑇 times:

𝑥 ← ෠𝑃𝑥

PageRank example

30

𝐴 =

0 0
1 0
0 1
0 0

1 0
0 0
0 0
1 0

𝑃 =

0 0
1 0
0 1
0 0

0.5 0.25
0 0.25
0 0.25
0.5 0.25

𝑑 = 0.9

Initialize: 𝑥 ←
1

|𝑉|
𝟏

Repeat 𝑇 times:

𝑥 ← ෠𝑃𝑥

𝑥 =

0.25
0.25
0.25
0.25

→→→→

0.21
0.26
0.31
0.21

𝐴 ← Adjacency_Matrix 𝐺
𝑃 ← replace zero columns of 𝐴 with 𝟏, and normalize columns

෠𝑃 ← 𝑑𝑃 + (1 − 𝑑)
1

𝑉
𝟏𝟏𝑇

෠𝑃 = 0.9

0 0
1 0
0 1
0 0

0.5 0.25
0 0.25
0 0.25
0.5 0.25

+ 0.1

0.25 0.25
0.25 0.25
0.25 0.25
0.25 0.25

0.25 0.25
0.25 0.25
0.25 0.25
0.25 0.25

=

0.025 0.025
0.925 0.025
0.025 0.925
0.025 0.025

0.475 0.25
0.025 0.25
0.025 0.25
0.475 0.25

Community detection

Community: subgraphs where nodes are densely connected to each other, but sparsely
connected to other nodes

A “soft” version of a clique (a fully connected subgraph)

A fundamental concept in e.g. social networks

31

Girvan-Newman Algorithm

Published in 2002 (Girvan and Newman, 2002), one of the first methods of

“modern” community detection

Basic idea: Recursively partition the network by removing edges, groups that are

last to be partitioned are “communities”

1. Compute “betweenness” of edges in the network = number of shortest paths

that pass through each edge

2. Remove edge(s) with highest betweenness, if this breaks the graph into

subgraphs, recursively partition each one

3. Result is a hierarchical partitioning of the graph

Challenge is efficiently computing betweenness as we partition graph (we will not

cover this) 32

Algorithmic illustration

33

49

33

12
1

Algorithmic illustration

34

Algorithmic illustration

35

Resulting hierarchy (dendrogram)

36

Communities can be extracted by looking at the grouping at different levels of the

tree

May want to threshold on things like community size, etc

Outline

Networks and graph

Representing graphs

Graph algorithms

Graph libraries

37

NetworkX

NetworkX: Python library for dealing with (medium-sized) graphs

https://networkx.github.io/

Simple Python interface for constructing graph, querying information about the

graph, and running a large suite of algorithms

Not suitable for very large graphs (all native Python, using adjacency dictionary

representation)

38

https://networkx.github.io/

Creating graphs

Create an undirected or directed graph

Add and remove nodes/edges

39

import networkx as nx

G = nx.Graph() # undirected graph

G = nx.DiGraph() # directed graph

add and remove edges

G.add_edges_from([("A","B"), ("B","C"), ("C","A"), ("C","D")])

G.remove_edge("A","B")

G.add_edge("A","B")

G.remove_edges_from([("A","B"), ("B","C")])

G.add_edges_from([("A","B"), ("B","C")])

also add_node(), remove_node(), add_nodes_form(), remove_nodes_from()

Nodes/edges and properties

NetworkX uses adjacency dictionary format internally

Iterate over nodes and edges

Get and set node/edge properties

40

for i in G.nodes(): # loop over nodes

print i

for i,j in G.edges(): # loop over edges

print i,j

G.node["A"]["node_property"] = "node_value"

G.edge["A"]["B"]["edge_property"] = "edge_value"

G.nodes(data=True) # iterator over nodes returning properties

G.edges(data=True) # iterator over edges returning properties

print G["C"]

{'A': {}, 'D': {}}

Drawing and node properties

Draw a graph using matplotlib (not the best visualization)

41

import matplotlib.pyplot as plt

%matplotlib inline

nx.draw(G,with_labels=True)

plt.savefig("mpl_graph.pdf")

Algorithms

Almost all the (medium scale) algorithms you could want

42

nx.shortest_path_length(G,source="A") # iterater over path lengths

nx.pagerank(G,alpha=0.9) # dictionary of node ranks

NOTE: this requires Networkx 2.0

nx.girvan_newman(G) # iterator over partitions at

different hierarchy levels

