
Announcements

HW1

• Due Tue 2/8

• Keeping an eye on Yelp changes

HW2

• Plan: Out Wed 2/9, Due Tue 2/22

1

Plan

Wrap up Visualization

• SQLite examples

• DB joins

Matrices, vectors, and linear algebra

2

15-388/688 - Practical Data Science:

Matrices, vectors, and linear algebra

Pat Virtue

Carnegie Mellon University

Spring 2022

3Slide credits: CMU AI, Zico Kolter

Outline

Matrices and vectors

Basics of linear algebra

Libraries for matrices and vectors

Sparse matrices

4

Outline

Matrices and vectors

Basics of linear algebra

Libraries for matrices and vectors

Sparse matrices

5

Vectors

A vector is a 1D array of values

We use the notation 𝑥 ∈ ℝ𝑛 to denote that 𝑥 is an 𝑛-dimensional vector with real-valued

entries

𝑥 =

𝑥1
𝑥2
⋮
𝑥𝑛

We use the notation 𝑥𝑖 to denote the ith entry of 𝑥

By default, we consider vectors to represent column vectors, if we want to consider a row

vector, we use the notation 𝑥𝑇

6

Matrices

A matrix is a 2D array of values

We use the notation 𝐴 ∈ ℝ𝑚×𝑛 to denote a real-valued matrix with 𝑚 rows and 𝑛 columns

𝐴 =

𝐴11 𝐴12 ⋯
𝐴21 𝐴22 ⋯
⋮

𝐴𝑚1

⋮
𝐴𝑚2

⋱
⋯

𝐴1𝑛
𝐴2𝑛
⋮

𝐴𝑚𝑛

We use 𝐴𝑖𝑗 to denote the entry in row 𝑖 and column 𝑗

Use the notation 𝐴𝑖: to refer to row 𝑖, 𝐴:𝑗 to refer to column 𝑗 (sometimes we’ll use other
notation, but we will define before doing so)

7

Matrices and linear algebra

Matrices are:

1. The “obvious” way to store tabular data (particularly numerical entries, though

categorical data can be encoded too) in an efficient manner

2. The foundation of linear algebra, how we write down and operate upon (multi-

variate) systems of linear equations

Understanding both these perspectives is critical for virtually all data science

analysis algorithms

8

Matrices as tabular data

Given the “Grades” table from our relation data lecture

Natural to represent this data (ignoring primary key) as a matrix

𝐴 ∈ ℝ3×2 =
100 80
60 80
100 100

9

Person ID HW1 Grade HW2 Grade

5 100 80

6 60 80

100 100 100

Row and column ordering

Matrices can be laid out in memory by row or by column

𝐴 =
100 80
60 80
100 100

Row major ordering: 100, 80, 60, 80, 100, 100

Column major ordering: 100, 60, 100, 80, 80, 100

Row major ordering is default for C 2D arrays (and default for Numpy), column

major is default for FORTRAN (since a lot of numerical methods are written in

FORTRAN, also the standard for most numerical code)

10

Higher dimensional matrices

From a data storage standpoint, it is easy to generalize 1D vector and 2D matrices

to higher dimensional ND storage

“Higher dimensional matrices” are called tensors

There is also an extension or linear algebra to tensors, but be aware: most tensor

use cases you see are not really talking about true tensors in the linear algebra

sense

11

Outline

Matrices and vectors

Basics of linear algebra

Libraries for matrices and vectors

Sparse matrices

12

Systems of linear equations

Matrices and vectors also provide a way to express and analyze systems of linear

equations

Consider two linear equations, two unknowns
4𝑥1 − 5𝑥2 =

−2𝑥1 + 3𝑥2 =
−13
9

We can write this using matrix notation as

𝐴𝑥 = 𝑏

𝐴 =
4 −5
−2 3

, 𝑏 =
−13
9

, 𝑥 =
𝑥1
𝑥2

13

Basic matrix operations

For 𝐴, 𝐵 ∈ ℝ𝑚×𝑛, matrix addition/subtraction is just the elementwise addition or

subtraction of entries

𝐶 ∈ ℝ𝑚×𝑛 = 𝐴 + 𝐵 ⟺ 𝐶𝑖𝑗 = 𝐴𝑖𝑗 + 𝐵𝑖𝑗

For 𝐴 ∈ ℝ𝑚×𝑛, transpose is an operator that “flips” rows and columns

𝐶 ∈ ℝ𝑛×𝑚 = 𝐴𝑇 ⟺ 𝐶𝑗𝑖 = 𝐴𝑖𝑗

For 𝐴 ∈ ℝ𝑚×𝑛, 𝐵 ∈ ℝ𝑛×𝑝 matrix multiplication is defined as

𝐶 ∈ ℝ𝑚×𝑝 = 𝐴𝐵 ⟺ 𝐶𝑖𝑗 = ෍

𝑘=1

𝑛

𝐴𝑖𝑘𝐵𝑘𝑗

• Matrix multiplication is associative, distributive, but not commutative

𝐴 𝐵𝐶 = 𝐴𝐵 𝐶 𝐴 𝐵 + 𝐶 = 𝐴𝐵 + 𝐴𝐶 (𝐴𝐵 ≠ 𝐵𝐴) 𝐴)
14

Basic matrix operations

For 𝐴, 𝐵 ∈ ℝ𝑚×𝑛, matrix addition/subtraction is just the elementwise addition or

subtraction of entries

𝐶 ∈ ℝ𝑚×𝑛 = 𝐴 + 𝐵 ⟺ 𝐶𝑖𝑗 = 𝐴𝑖𝑗 + 𝐵𝑖𝑗

For 𝐴 ∈ ℝ𝑚×𝑛, transpose is an operator that “flips” rows and columns

𝐶 ∈ ℝ𝑛×𝑚 = 𝐴𝑇 ⟺ 𝐶𝑗𝑖 = 𝐴𝑖𝑗

For 𝐴 ∈ ℝ𝑚×𝑛, 𝐵 ∈ ℝ𝑛×𝑝 matrix multiplication is defined as

𝐶 ∈ ℝ𝑚×𝑝 = 𝐴𝐵 ⟺ 𝐶𝑖𝑗 = ෍

𝑘=1

𝑛

𝐴𝑖𝑘𝐵𝑘𝑗

• Matrix multiplication is associative, distributive, but not commutative

𝐴 𝐵𝐶 = 𝐴𝐵 𝐶 𝐴 𝐵 + 𝐶 = 𝐴𝐵 + 𝐴𝐶 (𝐴𝐵 ≠ 𝐵𝐴) 𝐴)
15

Basic matrix operations

Matrix multiplication 𝐶 = 𝐴𝐵 ⟺ 𝐶𝑖𝑗 = σ𝑘=1
𝑛 𝐴𝑖𝑘𝐵𝑘𝑗

16

Matrix inverse

The identity matrix 𝐼 ∈ ℝ𝑛×𝑛 is a square matrix with ones on diagonal and zeros
elsewhere, has property that for 𝐴 ∈ ℝ𝑚×𝑛

𝐴𝐼 = 𝐼𝐴 = 𝐴 (for different sized 𝐼)

For a square matrix 𝐴 ∈ ℝ𝑛×𝑛, matrix inverse 𝐴−1 ∈ ℝ𝑛×𝑛 is the matrix such that

𝐴𝐴−1 = 𝐼 = 𝐴−1𝐴

Recall our previous system of linear equations 𝐴𝑥 = 𝑏, solution is easily written
using the inverse

𝑥 = 𝐴−1𝑏

Inverse need not exist for all matrices (conditions on linear independence of
rows/columns of 𝐴), we will consider such possibilities later

17

Some miscellaneous definitions/properties

Transpose of matrix multiplication, 𝐴 ∈ ℝ𝑚×𝑛, 𝐵 ∈ ℝ𝑛×𝑝

𝐴𝐵 𝑇 = 𝐵𝑇𝐴𝑇

Inverse of product, 𝐴 ∈ ℝ𝑛×𝑛, 𝐵 ∈ ℝ𝑛×𝑛 both square and invertible

𝐴𝐵 −1 = 𝐵−1𝐴−1

Inner product: for 𝑥, 𝑦 ∈ ℝ𝑛, special case of matrix multiplication

𝑥𝑇𝑦 ∈ ℝ =෍

𝑖=1

𝑛

𝑥𝑖𝑦𝑖

Vector norms: for 𝑥 ∈ ℝ𝑛, we use 𝑥 2 to denote Euclidean norm

𝑥 2 = 𝑥𝑇𝑥
1
2

18

Poll 1: Valid linear algebra expressions

Assume 𝐴 ∈ ℝ𝑛×𝑛, 𝐵 ∈ ℝ𝑛×𝑚, 𝐶 ∈ ℝ𝑚×𝑛, 𝑥 ∈ ℝ𝑛 with 𝑚 > 𝑛. Which of the

following are valid linear algebra expressions?

1. 𝐴 + 𝐵

2. 𝐴 + 𝐵𝐶

3. 𝐴𝐵 −1

4. 𝐴𝐵𝐶 −1

5. 𝐶𝐵𝑥

6. 𝐴𝑥 + 𝐶𝑥

19

Outline

Matrices and vectors

Basics of linear algebra

Libraries for matrices and vectors

Sparse matrices

20

Software for linear algebra

Linear algebra computations underlie virtually all machine learning and statistical

algorithms

There have been massive efforts to write extremely fast linear algebra code: don’t

try to write it yourself!

Example: matrix multiply, for large matrices, specialized code will be ~10x faster

than this “obvious” algorithm

21

void matmul(double **A, double **B, double **C, int m, int n, int p) {

for (int i = 0; i < m; i++) {

for (int j = 0; j < p; j++) {

C[i][j] = 0.0;

for (int k = 0; k < n; k++)

C[i][j] += A[i][k] * B[k][j];

}

}

}

Numpy

In Python, the standard library for matrices, vectors, and linear algebra is Numpy

Numpy provides both a framework for storing tabular data as multidimensional

arrays and linear algebra routines

Important note: numpy ndarrays are multi-dimensional arrays, not matrices and

vectors (there are just routines that support them acting like matrices or vectors)

22

Specialized libraries

BLAS (Basic Linear Algebra Subprograms) and LAPACK (Linear Algebra

PACKage) provide general interfaces for basic matrix multiplication (BLAS) and

fancier linear algebra methods (LAPACK)

Highly optimized version of these libraries: ATLAS, OpenBLAS, Intel MKL

Anaconda typically uses a reasonably optimized version of Numpy that uses one of

these libraries on the back end, but you should check

23

import numpy as np

print(np.__config__.show()) # print information on underlying

libraries

Creating Numpy arrays

Creating 1D and 2D arrays in Numpy

24

b = np.array([-13,9]) # 1D array construction

A = np.array([[4,-5], [-2,3]]) # 2D array contruction

b = np.ones(4) # 1D array of ones

b = np.zeros(4) # 1D array of zeros

b = np.random.randn(4) # 1D array of random normal entries

A = np.ones((5,4)) # 2D array of all ones

A = np.zeros((5,4)) # 2D array of zeros

A = np.random.randn(5,4) # 2D array with random normal entries

I = np.eye(5) # 2D identity matrix (2D array)

D = np.diag(np.random(5)) # 2D diagonal matrix (2D array)

Indexing into Numpy arrays

Arrays can be indexed by integers (to access specific element, row), or by slices,

integer arrays, or Boolean arrays (to return subset of array)

25

A[0,0] # select single entry

A[0,:] # select entire column

A[0:3,1] # slice indexing

integer indexing

idx_int = np.array([0,1,2])

A[idx_int,3]

boolean indexing

idx_bool = np.array([True, True, True, False, False])

A[idx_bool,3]

fancy indexing on two dimensions

idx_bool2 = np.array([True, False, True, True])

A[idx_bool, idx_bool2] # not what you want

A[idx_bool,:][:,idx_bool2] # what you want

Basic operations on arrays

Arrays can be added/subtracted, multiply/divided, and transposed, but these are

not the same as matrix operations

26

A = np.random.randn(5,4)

B = np.random.randn(5,4)

x = np.random.randn(4)

y = np.random.randn(5)

A+B # matrix addition

A-B # matrix subtraction

A*B # ELEMENTWISE multiplication

A/B # ELEMENTWISE division

A*x # multiply columns by x

A*y[:,None] # multiply rows by y (look this one up)

A.T # transpose (just changes row/column ordering)

x.T # does nothing (can't transpose 1D array)

Basic matrix operations

Matrix multiplication done using the .dot() function or @ operator, special meaning
for multiplying 1D-1D, 1D-2D, 2D-1D, 2D-2D arrays

There is also an np.matrix class … don’t use it
27

A = np.random.randn(5,4)

C = np.random.randn(4,3)

x = np.random.randn(4)

y = np.random.randn(5)

z = np.random.randn(4)

A @ C # matrix-matrix multiply (returns 2D array)

A @ x # matrix-vector multiply (returns 1D array)

x @ z # inner product (scalar)

A.T @ y # matrix-vector multiply

y.T @ A # same as above

y @ A # same as above

#A @ y # would throw error

Solving linear systems

Methods for inverting a matrix, solving linear systems

Important, always prefer to solve a linear system over directly forming the inverse

and multiplying (more stable and cheaper computationally)

Details: solution methods use a factorization (e.g., LU factorization), which is

cheaper than forming inverse

28

b = np.array([-13,9])

A = np.array([[4,-5], [-2,3]])

np.linalg.inv(A) # explicitly form inverse

np.linalg.solve(A, b) # A^(-1)*b, more efficient and numerically stable

Complexity of operations

Assume 𝐴, 𝐵 ∈ ℝ𝑛×𝑛, 𝑥, 𝑦 ∈ ℝ𝑛

Matrix-matrix product 𝐴𝐵: 𝑂(𝑛3)

Matrix-vector product 𝐴𝑥: 𝑂 𝑛2

Vector-vector inner product 𝑥𝑇𝑦: 𝑂(𝑛)

Matrix inverse/solve: 𝐴−1, 𝐴−1𝑦: 𝑂 𝑛3

Important: Be careful about order of operations, 𝐴𝐵 𝑥 = 𝐴(𝐵𝑥) but the left one
is 𝑂 𝑛3 right is 𝑂 𝑛2

29

Outline

Matrices and vectors

Basics of linear algebra

Libraries for matrices and vectors

Sparse matrices

30

Sparse matrices

Many matrices are sparse (contain mostly zero entries, with only a few non-zero

entries)

Examples: matrices formed by real-world graphs, document-word count matrices

(more on both of these later)

Storing all these zeros in a standard matrix format can be a huge waste of

computation and memory

Sparse matrix libraries provide an efficient means for handling these sparse

matrices, storing and operating only on non-zero entries

31

Coordinate format

There are several different ways of storing sparse matrices, each optimized for

different operations

Coordinate (COO) format: store each entry as a tuple

(row_index, col_index, value)

Important: these could be placed in any order

A good format for constructing sparse matrices
32

𝐴 =

0 0
2 0
0 1
4 0

3 0
0 1
0 0
1 0

data = [2 4 1 3 1 1]
row_indices = 1 3 2 0 3 1
col_indices = [0 0 1 2 2 3]

Compressed sparse column format

Compressed sparse column (CSC) format

Ordering is important (always column-major ordering)

Faster for matrix multiplication, easier to access individual columns

Very bad for modifying a matrix, to add one entry need to shift all data

33

𝐴 =

0 0
2 0
0 1
4 0

3 0
0 1
0 0
1 0

data = [2 4 1 3 1 1]
row_indices = 1 3 2 0 3 1
col_indices = [0 0 1 2 2 3]

col_indices = [0 2 3 5 6]

Compressed sparse column format

Compressed sparse column (CSC) format

Ordering is important (always column-major ordering)

Faster for matrix multiplication, easier to access individual columns

Very bad for modifying a matrix, to add one entry need to shift all data

34

𝐴 =

0 0
2 0
0 1
4 0

3 0
0 1
0 0
1 0

data = [2 4 1 3 1 1]
row_indices = 1 3 2 0 3 1
col_indices = [0 0 1 2 2 3]

col_indices = [0 2 3 5 6]

Sparse matrix libraries

Need specialized libraries for handling matrix operations (multiplication/solving

equations) for sparse matrices

General rule of thumb (very adhoc): if your data is 80% sparse or more, it’s

probably worthwhile to use sparse matrices for multiplication, if it’s 95% sparse or

more, probably worthwhile for solving linear systems)

The scipy.sparse module provides routines for constructing sparse matrices in

different formats, converting between them, and matrix operations

35

import scipy.sparse as sp

A = sp.coo_matrix((data, (row_idx, col_idx)), size)

B = A.tocsc()

C = A.todense()

