
Announcements

Waitlist

Participation

HW1

• Due Tue 2/8

Grading infrastructure

• https://mugrade.datasciencecourse.org/

• Create new account with <andrewid>@andrew.cmu.edu

• More instructions in hw1_get_started

1

https://mugrade.datasciencecourse.org/

Announcements

HW 1 tip

• Number of pages

• Inspecting

2

15-388/688 - Practical Data Science:

Relational Data

Pat Virtue

Carnegie Mellon University

Spring 2022

3Slide credits: CMU AI, Zico Kolter

Outline

Overview of relational data

Entity relationships

Pandas and SQLite

Joins

4

Outline

Overview of relational data

Entity relationships

Pandas and SQLite

Joins

5

The basic relation (i.e. the table)

The term technical term “relation” can be interchanged with the standard notion we

have of “tabular data,” say an instance of a “Person” relation

6

ID Last Name First Name Role

1 Virtue Pat Instructor

2 Koppol Pallavi TA

3 Cordwell Katherine TA

4 Vajiac Cat TA

5 Veloso Manuela Student

6 Resnik Judy Student

The basic relation (i.e. the table)

The term technical term “relation” can be interchanged with the standard notion we

have of “tabular data,” say an instance of a “Person” relation

Rows are called tuples (or records), represent a single instance of this relation, and

must be unique
7

ID Last Name First Name Role

1 Virtue Pat Instructor

2 Koppol Pallavi TA

3 Cordwell Katherine TA

4 Vajiac Cat TA

5 Veloso Manuela Student

6 Resnik Judy Student

The basic relation (i.e. the table)

The term technical term “relation” can be interchanged with the standard notion we

have of “tabular data,” say an instance of a “Person” relation

Columns are called attributes, specify some element contained by each of the

tuples
8

ID Last Name First Name Role

1 Virtue Pat Instructor

2 Koppol Pallavi TA

3 Cordwell Katherine TA

4 Vajiac Cat TA

5 Veloso Manuela Student

6 Resnik Judy Student

Multiple tables and relations

9

ID Name

1 Instructor

2 TA

3 Student

Person Role

ID Last Name First Name

1 Virtue Pat

2 Koppol Pallavi

3 Cordwell Katherine

4 Vajiac Cat

5 Veloso Manuela

6 Resnik Judy

Role

Instructor

TA

TA

TA

Student

Student

Role ID

1

2

2

2

3

3

Primary keys

Primary key: unique ID for every tuple in a relation (i.e. every row in the table),

each relation must have exactly one primary key

10

ID Name

1 Instructor

2 TA

3 Student

Person Role

ID Last Name First Name

1 Virtue Pat

2 Koppol Pallavi

3 Cordwell Katherine

4 Vajiac Cat

5 Veloso Manuela

6 Resnik Judy

Role

Instructor

TA

TA

TA

Student

Student

Role ID

1

2

2

2

3

3

Foreign keys

A foreign key is an attribute that points to the primary key of another relation

If you delete a primary key, need to delete all foreign keys pointing to it
11

ID Name

1 Instructor

2 TA

3 Student

Person Role

ID Last Name First Name

1 Virtue Pat

2 Koppol Pallavi

3 Cordwell Katherine

4 Vajiac Cat

5 Veloso Manuela

6 Resnik Judy

Role

Instructor

TA

TA

TA

Student

Student

Role ID

1

2

2

2

3

3

Reminder: Computational Complexity

12

Poll 1

I’m thinking of a number between 1 and 64. After each guess, I’ll tell you if you’re

correct or if my number is higher or lower.

What is the maximum number of guesses you’ll need to win this game?

A: 6

B: 7

C: 32

D: 64

13

Poll 1

I’m thinking of a number between 1 and 64. After each guess, I’ll tell you if you’re

correct or if my number is higher or lower.

What is the maximum number of guesses you’ll need to win this game?

14

𝑁 10 100 1000 10K 100K 1M 10M 100M

log2 𝑁 3.3 6.6 10.0 13.3 16.6 19.9 23.3 26.6

log2𝑁 + 1 4 7 11 14 17 20 24 27

Reminder: Computational Complexity

15

Indexes (not indices)

Indexes are created as ways to “quickly” access elements of a table

For example, consider finding people with last name “Gates”: no option but just

scan through the whole dataset: 𝑂 𝑛 operation

16

ID Last Name First Name

1 Virtue Pat

2 Koppol Pallavi

3 Cordwell Katherine

4 Vajiac Cat

5 Veloso Manuela

6 Resnik Judy

Role ID

1

2

2

2

3

3

Think of an index as a separate sorted table containing the indexed column and
the tuple location: searching for value takes 𝑂(log 𝑛) time

In practice, use data structure like a B-tree or several others

Indexes

Location

0

100

200

300

400

500

17

ID Last Name First Name Role ID

1 Virtue Pat 1

2 Koppol Pallavi 2

3 Cordwell Katherine 2

4 Vajiac Cat 2

5 Veloso Manuela 3

6 Resnik Judy 3

Last Name Location

Cordwell 200

Koppol 100

Resnik 500

Vajiac 300

Veloso 400

Virtue 0

Person Last Name Index

Indexes

The primary key always has an index associated with it (so you can think of primary

keys themselves as always being a fast way to access data)

Indexes don’t have to be on a single column, can have an index over multiple

columns (with some ordering)

18

Outline

Overview of relational data

Entity relationships

Pandas and SQLite

Joins

19

Entity relationships

Several types of inter-table relationships

1. One-to-one

2. (One-to-zero/one)

3. One-to-many (and many-to-one)

4. Many-to-many

These relate one (or more) rows in a table with one (or more) rows in another table,

via a foreign key

Note that these relationships are really between the “entities” that the tables

represent, but we won’t formalize this beyond the basic intuition

20

One-to-many relationship

We have already seen a one-to-many relationship: one role can be shared by

many people, denoted as follows

21

ID Name

1 Instructor

2 TA

3 Student

Person Role

ID Last Name First Name

1 Virtue Pat

2 Koppol Pallavi

3 Cordwell Katherine

4 Vajiac Cat

5 Veloso Manuela

6 Resnik Judy

Role ID

1

2

2

2

3

3

Person Role

One-to-one relationships

In a true one-to-one relationship spanning multiple tables, each row in a table has

exactly one row in another table

Not very common to break these across multiple tables, as you may as well just

add another attribute to an existing table, but it is possible

22

Person

ID Last Name First Name

1 Virtue Pat

2 Koppol Pallavi

Role ID

1

2

Andrew ID

Person ID Andrew ID

1 pvirtue

2 pkoppol

… …

Person Andrew ID

One-to-zero/one relationships

More common in databases is to find “one-to-zero/one” relationships broken
across multiple tables

Consider adding a “Grades” table to our database: each person can have at most
one tuple in the grades table

Bars and circles denote “mandatory” versus “optional” relationships (we won’t
worry about these, just know that there is notation for them)

23

Grades

Person ID HW1 Grade HW2 Grade

5 100 80

6 60 80

Person Grades

Many-to-many relationships

Creating a grades table as done before is a bit cumbersome, because we need to

keep adding columns to the table, null entries if someone doesn’t do the homework

Alternatively, consider adding two tables, a “homework” table that represents

information about each homework, and an associative table that links homeworks

to people

24

Homework

ID Name 388 Points 688 Points

1 HW 1 65 35

2 HW 2 75 25

Person Homework

Person ID HW ID Score

5 1 100

5 2 80

6 1 60

6 2 80

Poll 2: Associative tables

What is the primary key of this table?

A. Person ID

B. HW ID

C. Score

D. None of the above

25

Person Homework

Person ID HW ID Score

5 1 100

5 2 80

6 1 60

6 2 80

Poll 3: Associative tables

Which indexes would you want to create on this

table? Select ALL that apply.

A. Person ID

B. HW ID

C. Score

D. HW ID and Score

E. None of the above

26

Person Homework

Person ID HW ID Score

5 1 100

5 2 80

6 1 60

6 2 80

Many-to-many relationships

Setups like this encode many-to-many relationships: each person can have

multiple homeworks, and each homework can be done by multiple people

We could also write this in terms of relationships specified by the associative table,

but this is not really correct, as it is mixing up the underlying relationships with how

they are stored in a database

28

Person Homework

Person HomeworkPerson Homework

Outline

Overview of relational data

Entity relationships

Pandas and SQLite

Joins

29

Pandas

Pandas is a “Data Frame” library in Python, meant for manipulating in-memory data

with row and column labels (as opposed to, e.g., matrices, that have no row or

column labels)

Pandas is not a relational database system, but it contains functions that mirror

some functionality of relational databases

We’re going to cover Pandas in more detail in other portions of the class, but just

discuss basic functionality for now

30

Pandas examples

Create a DataFrame with our Person example:

31

import pandas as pd

df = pd.DataFrame([(1, 'Virtue', 'Pat'),

(2, 'Koppol', 'Pallavi'),

(3, 'Cordwell', 'Katherine'),

(4, 'Vajiac', 'Cat'),

(5, 'Veloso', 'Manuela'),

(6, 'Resnik', 'Judy')],

columns=["id", "last_name", "first_name"])

Some important notes

As mentioned, Pandas is not a relational data system, in particular it has no notion

of primary keys (but it does have indexes)

Operations in Pandas are typically not in place (that is, they return a new modified

DataFrame, rather than modifying an existing one)

Use the “inplace” flag to make them done in place

If you select a single row or column in a Pandas DataFrame, this will return a “Series”

object, which is like a one-dimensional DataFrame (it has only an index and corresponding

values, not multiple columns)

32

Some common Pandas commands

We’re going to cover more next lecture in conjunction with visualization

33

read CSV file into DataFrame

df = pd.read_csv(filename)

get first five rows of DataFrame

df.head()

index into a dataframe

df.loc[rows, columns] and df.iloc[row numbers, column numbers]

df.loc[:, "Last Name"] # Series of all last names

df.loc[:, ["Last Name"]] # DataFrame with one column

df.loc[[1,2], :] # DataFrame with only ids 1,2

df.loc[1,"Last Name"] = "Vice" # Set an entry in a DataFrame

df.loc[7,:] = (”Hebert", "Martial") # Add a new entry with index=7

df.iloc[0,0] # Index rows and columns by zero-index

SQLite

An actual relational database management system (RDBMS)

Unlike most systems, it is a serverless model, applications directly connect to a file

Allows for simultaneous connections from many applications to the same database

file (but not quite as much concurrency as client-server systems)

All operations in SQLite will use SQL (Structured Query Language) command

issued to the database object

You can enforce foreign keys in SQLite, but we won’t bother

34

Creating a database and table

You can create a database and connect using this boilerplate code:

Create a new table:

35

import sqlite3

conn = sqlite3.connect("people.db")

cursor = conn.cursor()

do your stuff

conn.close()

cursor.execute("""

CREATE TABLE role (

id INTEGER PRIMARY KEY,

name TEXT

)""")

Creating a new table and inserting data

Insert data into the table:

Delete items from a table:

Note: if you don’t call commit, you can undo with conn.rollback()

36

cursor.execute("INSERT INTO role VALUES (1, 'Instructor')")

cursor.execute("INSERT INTO role VALUES (2, 'TA')")

cursor.execute("INSERT INTO role VALUES (3, 'Student')")

conn.commit()

cursor.execute("DELETE FROM role WHERE id == 3")

conn.commit()

Querying all data from a table

Read all the rows from a table:

Read table directly into a Pandas DataFrame:

37

for row in cursor.execute('SELECT * FROM role'):

print row

pd.read_sql_query("SELECT * FROM role", conn, index_col="id")

Outline

Overview of relational data

Entity relationships

Pandas and SQLite

Joins

38

Joins

Join operations merge multiple tables into a single relation (can be then saved as a

new table or just directly used)

Four typical types of joins:

1. Inner

2. Left

3. Right

4. Outer

You join two tables on columns from each table, where these columns specify

which rows are kept

39

Example: joining Person and Grades

Consider joining two tables, Person and Grades, on ID / Person ID

40

Person

ID Last Name First Name

1 Virtue Pat

2 Koppol Pallavi

3 Cordwell Katherine

4 Vajiac Cat

5 Veloso Manuela

6 Resnik Judy

Role ID

1

2

2

2

3

3

Grades

Person ID HW1 Grade HW2 Grade

5 100 80

6 60 80

100 100 100

Inner join (usually what you want)

Join two tables where we only return the rows where the two joined columns

contain the same value

Only these two rows have an entry in “Person” and an entry in “Grades”

41

ID Last Name First Name Role ID HW1 Grade HW2 Grade

5 Veloso Manuela 3 100 80

6 Resnik Judy 3 60 80

Inner join in Pandas/SQLite

In Pandas, you can also join on index using right_index/left_index parameters

There is also the join call in Pandas, which is a bit more limited (always assumes

right is joined on index, left not on index)

42

Pandas way

df_person = pd.read_sql_query("SELECT * FROM person", conn)

df_grades = pd.read_sql_query("SELECT * FROM grades", conn)

df_person.merge(df_grades, how="inner",

left_on="id", right_on="person_id")

SQLite way

cursor.execute("SELECT * FROM person, grades WHERE

person.id == grades.person_id")

Left joins

Keep all rows of the left table, add entries from right table that match the

corresponding columns

Example: left join Person and Grades on ID, Person ID

43

ID Last Name First Name Role ID HW1 Grade HW2 Grade

1 Virtue Pat 1 NULL NULL

2 Koppol Pallavi 2 NULL NULL

3 Cordwell Katherine 2 NULL NULL

4 Vajiac Cat 2 NULL NULL

5 Veloso Manuela 3 100 80

6 Resnik Judy 3 60 80

Left join in Pandas and SQLite

44

Pandas way

df_person.merge(df_grades, how="left",

left_on="id", right_on="person_id")

SQLite way

cursor.execute("SELECT * FROM person LEFT JOIN grades ON

person.id == grades.person_id")

Right join

Like a left join but with the roles of the tables reversed

45

ID Last Name First Name Role ID HW1 Grade HW2 Grade

5 Veloso Manuela 3 100 80

6 Resnik Judy 3 60 80

100 NULL NULL NULL 100 100

Pandas way

df_person.merge(df_grades, how=”right",

left_on="id", right_on="person_id")

Not supported in SQLite

Outer join

Return all rows from both left and right join

46

ID Last Name First Name Role ID HW1 Grade HW2 Grade

1 Virtue Pat 1 NULL NULL

2 Koppol Pallavi 2 NULL NULL

3 Cordwell Katherine 2 NULL NULL

4 Vajiac Cat 2 NULL NULL

5 Veloso Manuela 3 100 80

6 Resnik Judy 3 60 80

100 NULL NULL NULL 100 100

Pandas way

df_person.merge(df_grades, how=”outer",

left_on="id", right_on="person_id")

Little Bobby Tables

https://xkcd.com/327/

47

https://xkcd.com/327/

