
Announcements

New classroom

• Not yet official

• Will announce

• Still in GHC

• 6 more seats

Waitlist

388/688 Sections

• Undergrads stay in 388, grads stay in 688 (no switching)

1

Announcements

HW1

• Plan out tomorrow night

• Plan due Tue 2/8

Grading infrastructure

• https://mugrade.datasciencecourse.org/

• Create new account with <andrewid>@andrew.cmu.edu

• More instructions in HW1

2

https://mugrade.datasciencecourse.org/

Plan

• Wrap up intro slides

• Data collection and scraping

3

15-388/688 - Practical Data Science:

Data collection and scraping

Pat Virtue

Carnegie Mellon University

Spring 2022

4Slide credits: CMU AI, Zico Kolter

Outline

The data collection process

Common data formats and handling

Regular expressions and parsing

5

Outline

The data collection process

Common data formats and handling

Regular expressions and parsing

6

The first step of data science

The first step in data science …

... is to get some data

You will typically get data in one of four ways:

1. Directly download a data file (or files) manually

2. Query data from a database

3. Query an API (usually web-based, these days)

4. Scrap data from a webpage

7

covered today

– to be covered in later lecture

– not much to say

Issuing HTTP queries

The vast majority of automated data queries you will run will use HTTP requests

(it’s become the dominant protocol for much more than just querying web pages)

I know we promised to teach you know things work under the hood … but we are

not going to make you implement an HTTP client

Do this instead (requests library, http://docs.python-requests.org/):

8

import requests

response = requests.get("http://www.datasciencecourse.org")

some relevant fields

response.status_code

response.content # or response.text

response.headers

response.headers['Content-Type']

http://docs.python-requests.org/

HTTP Request Basics

You’ve seen URLs like these:
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=9&cad=rja&uact=8…

The weird statements after the url are parameters, you would provide them using

the requests library like this:

HTTP GET is the most common method, but there are also PUT, POST, DELETE

methods that change some state on the server

9

params = {"sa":"t", "rct":"j", "q":"", "esrc":"s",

"source":"web", "cd":"9", "cad":"rja", "uact":"8"}

response = requests.get("http://www.google.com/url", params=params)

response = requests.put(...)

response = requests.post(...)

response = requests.delete(...)

RESTful APIs

If you move beyond just querying web pages to web APIs, you’ll most likely

encounter REST APIs (Representational State Transfer)

REST is more a design architecture, but a few key points:

1. Uses standard HTTP interface and methods (GET, PUT, POST, DELETE)

2. Stateless – the server doesn’t remember what you were doing

Rule of thumb: if you’re sending the your account key along with each API call,

you’re probably using a REST API

10

Querying a RESTful API

You query a REST API similar to standard HTTP requests, but will almost always
need to include parameters

Get your own access token at https://github.com/settings/tokens/new

GitHub API uses GET/PUT/DELETE to let you query or update elements in your
GitHub account automatically

Example of REST: server doesn’t remember your last queries, for instance you
always need to include your access token if using it this way

11

token = "" # not going to tell you mine

headers = {'Authorization': 'token '+token}

response = requests.get("https://api.github.com/user", headers=headers)

print(response.content)

#{"login":“pvirtue","id":5945661,"avatar_url":"https://avatars.githubu…

https://github.com/settings/tokens/new

Authentication

Basic authentication has traditionally been the most common approach to access

control for web pages

Most APIs have replaced this with some form of Oauth or token-based

authorization

12

this won't work anymore

response = requests.get("https://api.github.com/user",

auth=(‘pvirtue', 'passwd'))

Outline

The data collection process

Common data formats and handling

Regular expressions and parsing

13

Data formats

The three most common formats (judging by my completely subjective

experience):

1. CSV (comma separate value) files

2. JSON (Javascript object notation) files and strings

3. HTML/XML (hypertext markup language / extensible markup language) files

and strings

14

CSV Files

Refers to any delimited text file (not always separated by commas)

If values themselves contain commas, you can enclose them in quotes (our
registrar apparently always does this, just to be safe)

We’ll talk about the pandas library a lot more in later lectures

15

"Semester","Course","Section","Lecture","Mini","Last Name","Preferred/First

Name","MI","Andrew ID","Email","College","Department","Class","Units","Grade

Option","QPA Scale","Mid-Semester Grade","Final Grade","Default Grade","Added

By","Added On","Confirmed","Waitlist Position","Waitlist Rank","Waitlisted

By","Waitlisted On","Dropped By","Dropped On","Roster As Of Date”

"F16","15688","B","Y","N",”Kolter","Zico","","zkolter","zkolter@andrew.cmu.edu","S

CS","CS","50","12.0","L","4+"," "," ","","reg","1 Jun

2016","Y","","","","","","","30 Aug 2016 4:34"

import pandas as pd

dataframe = pd.read_csv("CourseRoster_F16_15688_B_08.30.2016.csv",

delimiter=',', quotechar='"')

JSON files / string

JSON originated as a way of encapsulating Javascript objects

A number of different data types can be represented

Number: 1.0 (always assumed to be floating point)

String: "string"

Boolean: true or false

List (Array): [item1, item2, item3,…]

Dictionary (Object in Javascript): {"key":value}

Lists and Dictionaries can be embedded within each other:

[{"key":[value1, [value2, value3]]}]
16

Example JSON data

JSON from Github API

17

{

'login': 'pvirtue',

'id': 5945661,

'node_id': 'MDQ6VXNlcjU5NDU2NjE=',

'avatar_url': 'https://avatars.githubusercontent.com/u/5945661?v=4',

'gravatar_id': '',

'url': 'https://api.github.com/users/pvirtue',

'html_url': 'https://github.com/pvirtue',

'followers_url': 'https://api.github.com/users/pvirtue/followers',

'following_url': 'https://api.github.com/users/pvirtue/following{/other_user}',

'gists_url': 'https://api.github.com/users/pvirtue/gists{/gist_id}',

'starred_url': 'https://api.github.com/users/pvirtue/starred{/owner}{/repo}',

'subscriptions_url': 'https://api.github.com/users/pvirtue/subscriptions',

'organizations_url': 'https://api.github.com/users/pvirtue/orgs',

'repos_url': 'https://api.github.com/users/pvirtue/repos',

'events_url': 'https://api.github.com/users/pvirtue/events{/privacy}',

'received_events_url': 'https://api.github.com/users/pvirtue/received_events',

'type': 'User',

'site_admin': False,

'name': 'Pat Virtue', ...

Parsing JSON in Python

Built-in library to read/write Python objects from/to JSON files

18

import json

load json from a REST API call

headers = {'Authorization': 'token '+token}

response = requests.get("https://api.github.com/user", headers=headers)

data = json.loads(response.content)

json.load(file) # load json from file

json.dumps(obj) # return json string

json.dump(obj, file) # write json to file

XML / HTML files

The main format for the web (though XML seems to be loosing a bit of popularity to
JSON for use in APIs / file formats)

XML files contain hiearchical content delineated by tags

HTML is syntactically like XML but horrible (e.g., open tags are not always closed),
more fundamentally, HTML is mean to describe appearance

19

<tag attribute="value">

<subtag>

Some content for the subtag

</subtag>

<openclosetag attribute="value2”/>

</tag>

Parsing XML/HTML in Python

There are a number of XML/HTML parsers for Python, but a nice one for data

science is the BeautifulSoup library (specifically focused on getting data out of

XML/HTML files)

You’ll play some with BeautifulSoup in the first homework

20

get all the links within the data science course schedule

from bs4 import BeautifulSoup

import requests

response = requests.get("http://www.datasciencecourse.org/lectures")

root = BeautifulSoup(response.content)

root.find("table").find("tbody").findAll("a")

Outline

The data collection process

Common data formats and handling

Regular expressions and parsing

21

Regular expressions

Once you have loaded data (or if you need to build a parser to load some other

data format), you will often need to search for specific elements within the data

E.g., find the first occurrence of the string “data science”

22

import re

text = "This course will introduce the basics of data science"

match = re.search(r"data science", text)

print(match.start())

41

Regular expressions in Python

A few common methods to call regular expressions in Python:

You can also use “compiled” version of regular expressions

23

match = re.match(r"data science", text) # check if start of text matches

match = re.search(r"data science", text) # find first match or None

for match in re.finditer("data science", text):

iterate over all matches in the text

...

all_matches = re.findall(r"data science", text) # return all matches

regex = re.compile(r"data science")

regex.match(text, [startpos, [endpos]])

regex.search(...)

regex.finditer(...)

regex.findall(...)

Matching multiple potential characters

The real power of regular expressions comes in the ability to match multiple
possible sequence of characters

Special characters in regular expressions: .^$*+?{}\[]|() (if you want to match these
characters exactly, you need to escape them: \$)

Match sets of characters:

• Match the character ‘a’: a

• Match the character ‘a’, ‘b’, or ‘c’: [abc]

• Many any character except ‘a’, ‘b’, or ‘c’: [^abc]

• Match any digit: \d (= [0-9])

• Match any alpha-numeric: \w (= [a-zA-z0-9_])

• Match whitespace: \s (= [\t\n\r\f\v])

• Match any character: . (including newline with re.DOTALL)
24

Matching repeated characters

Can match one or more instances of a character (or set of characters)

Some common modifiers:

• Match character ‘a’ exactly once: a

• Match character ‘a’ zero or one time: a?

• Match character ‘a’ zero or more times: a*

• Match character ‘a’ one or more times: a+

• Match character ‘a’ exactly n times: a{n}

Can combine these with multiple character matching:

• Match all instances of “<something> science” where <something> is an
alphanumeric string with at least one character

• \w+\s+science
25

Poll 1: regular expressions

Which strings would be matched (i.e, calling re.match()) by the regular expression?

\w+\s+science

Select ALL that apply:

A. “life science”

B. “life sciences”

C. “life. Science”

D. “this data science problem”

26

Grouping

We often want to obtain more information that just whether we found a match or

not (for instance, we may want to know what text matched)

Grouping: enclose portions of the regular expression in parentheses to

“remember” these portions of the match

(\w+)\s([Ss]cience)

Why the ‘r’ before the string? Avoids need to double escape strings

27

match = re.search(r"(\w+)\s([Ss]cience)", text)

print(match.start(), match.groups())

41 (’data', ’science')

Substitutions

Regular expressions provide a power mechanism for replacing some text with

other text

To include text that was remembered in the matching using groups, use the

escaped sequences \1, \2, … in the substitution text

(You can also use backreferences within a single regular expression)

28

better_text = re.sub(r"data science", r"schmada science", text)

better_text = re.sub(r"(\w+)\s([Ss])cience", r"\1 \2hmience", text)

Ordering and greedy matching

There is an order of operations in regular expressions

abc|def matches the strings “abc” or “def”, not “ab(c or d)ef”

You can get around this using parenthesis e.g. a(bc|de)f

This also creates a group, use a(?:bc|de)f if you don’t want to capture it

By default, regular expressions try to capture as much text as possible (greedy

matching)

<(.*)> applied to <a>text will match the entire expression

If you want to capture the least amount of text possible use <(.*?)> this will

just match the <a> term

29

Additional features

We left out a lot of elements here to keep this brief: start/end lines, lookaheads,

named groups, etc

Don’t worry if you can’t remember all this notation (I had to look some things up

while preparing this lecture too)

Use the docs: https://docs.python.org/3/howto/regex.html,

https://docs.python.org/3/library/re.html

Try out test expressions to see what happens

30

https://docs.python.org/2/howto/regex.html
https://docs.python.org/2/library/re.html

