
15-388/688 - Practical Data Science:

Big data and MapReduce

Pat Virtue

Carnegie Mellon University

Spring 2022

1Slide credits: CMU AI, Zico Kolter

Outline

Big data

Some context in distributed computing

map + reduce

MapReduce

MapReduce in Python (very briefly)

2

Outline

Big data

Some context in distributed computing

map + reduce

MapReduce

MapReduce in Python (very briefly)

3

“Big data”

4

My laptop

16GB RAM

500GB Disk

Big data?

No

Google Data

Center

??? RAM/Disk

(>> PBs)

Big data?

Yes

?

Some notable inflection points

1. Your data fits in RAM on a single machine

2. Your data fits on disk on a single machine

3. Your data fits in RAM/disk on a “small” cluster of machines (you don’t need to

worry about machines dying)

4. Your data fits in RAM/disk on a “large” cluster of machine (you need to worry

about machines dying)

Probably reasonable to refer to 3+ as “big data”, but many would only consider 4

5

Do you have big data?

If your data fits on a single machine (even on disk), then it’s almost always better to

think about how you can design an efficient single-machine solution, unless you

have extremely good reasons for doing otherwise

6

Tables from [McSherry et al., 2015 “Scalability! But at what COST”]

Outline

Big data

Some context in distributed computing

map + reduce

MapReduce

MapReduce in Python (very briefly)

7

Distributed computing

Distributed computing rose to prominence in the 70s/80s, often built around

“supercomputing,” for scientific computing applications

8

1984 – Cray-2

(4 vector processors)

1971 – CMU C.mmp

(16 PDP-11 processors)

Message passing interface

In mid-90s, researchers built a common interface for distributed computing called

the message passing interface (MPI)

MPI provided a set of tools to run multiple processes (on a single machine or

across many machines), that could communicate, send data between each other

(all of “scattering”, “gathering”, “broadcasting”), and synchronize execution

Still common in scientific computing applications and HPC (high performance

computing)

9

Downsides to MPI

MPI is extremely powerful but has some notable limitations

1. MPI is complicated: programs need to explicitly manage data, synchronize

threads, etc

2. MPI is brittle: if machines die suddenly, can be difficult to recover (unless

explicitly handled by the program, making them more complicated)

10

A new paradigm for data processing

When Google was building their first data centers, they used clusters of off-the-

shelf commodity hardware; machines had different speeds and failures were

common given cluster sizes

Data itself was distributed (redundantly) over many machines, as much as possible

wanted to do the computation on the machine where the data is stored

Led to the development of the MapReduce framework at Google [Dean and

Ghemawat, 2004], later made extremely popular through the Apache Hadoop

open source implementation, now more dominantly through Apache Spark

11

MapReduce

A simple paradigm for distributed computation where users write just two

functions: a mapper and a reducer

Work can be automatically farmed out to a large collection of machines

As much as possible, computation is done on the machine where the data lives

Node failures or “stragglers” (nodes that are slow for some reason) are

automatically handled

12

Big data since MapReduce

MapReduce is a wonderful, but many disadvantages (discussed shortly)

Since ~2010s, big data community has been “slowly” trying to re-integrate some of
the ideas from the HPC community

Aside: GPUs are really the natural descendants of the HPC line of work, which are
doing pretty well in data science these days…

Remember:

Speed(network) < Speed(disk) < Speed(RAM) < Speed(Cache)

(use the fastest data storage mechanism possible)

13

Outline

Big data

Some context in distributed computing

map + reduce

MapReduce

MapReduce in Python (very briefly)

14

Primer: map and reduce functions

We can get some intuition on MapReduce by inspiration from the map and reduce

functions in Python (but MapReduce ≠ map + reduce)

The map call takes a function and a list (iterable) and generates a new list of the

function applied to each element:

map(f, [a, b, c, ...]) -> [f(a), f(b), f(c), ...]

The reduce call takes a function and a list (iterable) and iteratively applies the

function to two elements (next item in the list and result of previous function)

reduce(g, [a, b, c, ...]) -> g(g(g(a,b),c), ...)

15

Example: Sum of squared elements

We could take a list, square each element, and add these squared terms together

using the following code

16

from functools import reduce

data = [1,2,3,4]

values = map(lambda x : x*x, data)

values = [1, 4, 9, 16]

output = reduce(lambda x,y: x+y, values)

output = 30

Map and reduce graphically

17

f f f f

g

g

g

...

...
map

reduce

Mappers, reducers, and execution engines

We’ll specifically refer to the mapper function, the reducer function and the

execution engine (the supporting code that actually calls the map and reduce

functions)

18

def map_reduce_execute(data, mapper, reducer):

values = map(mapper, data)

output = reduce(reducer, values)

return output

def mapper_square(x):

return x**2

def reducer_sum(x,y):

return x+y

map_reduce_execute([1,2,3,4], mapper_square, reducer_sum)

Abstracting map + reduce

Key point: to use this framework, the programmer only needs to implement the

mapper and reducer function, and the execution engine can use whatever method

it wants to actually compute the result

For instance, the application of the mapper functions is inherently parallel, can be

carried out in separate threads/machines

In many cases, the reduce step can also be carried out incrementally

19

Distributed map + reduce

Single machine execution engine:

Distributed execution engine:

20

Data

Worker 1

Worker 2

Worker n

Master mapper() reducer() Master

reducer()

Data

mapper() reducer()

Outline

Big data

Some context in distributed computing

map + reduce

MapReduce

MapReduce in Python (very briefly)

21

MapReduce (≠ map + reduce)

You can think of MapReduce as map + reduce “by key”

Mapper function doesn’t just return a single value, but a list of key-value pairs (with

potentially multiple instances of the same key)

Before calling the reducer, the execution engine groups all results by key

22

map + reduce vs. MapReduce

23

Item 1 Value 1

Item 2 Value 2

Item 1

Item 2

Key Value 1

Output

Key Value 2

Key Value 3

Key Value 4

Key
Value 1

Value 4

Key
Value 2

Value 3

Key Output

Key Output

mapper()
reducer()

mapper() Group by key

reducer()

MapReduce

map + reduce

Example: word count

the wheels on the bus

go round and round

round and round

round and round

the wheels on the bus

go round and round

all through the town

24

[(the,1) (wheels,1) (on,1) (the,1) (bus,1)]

[(go,1) (round,1) (and,1) (round,1)]

[(round,1) (and,1) (round,1)]

[(round,1) (and,1) (round,1)]

[(the,1) (wheels,1) (on,1) (the,1) (bus,1)]

[(go,1) (round,1) (and,1) (round,1)]

[(all,1) (through,1) (the,1) (town,1)]

(and, [1,1,1,1])

(on, [1,1])

(all, [1]),

(bus, [1,1]),

(round, [1,1,1,1,1,1,1,1]),

(town, [1]),

(through, [1]),

(go, [1, 1]),

(the, [1, 1, 1, 1, 1]),

(wheels, [1,1])

(and, 4)

(on, 2)

(all, 1),

(bus, 2),

(round, 8),

(town, 1),

(through, 1),

(go, 2),

(the, 5),

(wheels, 2)

mapper()

group by key reducer()

MapReduce execution engine

A simple MapReduce execution engine (no parallelism, so not particularly useful),

can be written as follows

25

def mapreduce_execute(data, mapper, reducer):

values = map(mapper, data)

groups = {}

for items in values:

for k,v in items:

if k not in groups:

groups[k] = [v]

else:

groups[k].append(v)

output = [reducer(k,v) for k,v in groups.items()]

return output

MapReduce word occurrence count example

In this engine, we can run our word occurrence counter by specifying the following

mapper and reducer

26

def mapper_word_occurrence(line):

return [(word, 1) for word in line.split(" ")]

def reducer_sum(key, val):

return (key, sum(val))

lines = ["the wheels on the bus",

"go round and round",

"round and round",

"round and round",

"the wheels on the bus",

"go round and round",

"all through the town"]

mapreduce_execute(lines, mapper_word_occurrence, reducer_sum)

More advanced usage

In original paper, and most implementations, input data is also in key/value form, so

the mapper also is provided with a key value pair

Many real applications require chaining together multiple map/reduce steps

“Combiners” are local reducers that run after each map to potentially reduce

network overhead

Optional ability for functions to all share some additional context (i.e., shared read-

only memory between multiple mappers / reducers)

27

Advantages of MapReduce

MapReduce isn’t popular because of what it can do, it’s popular because of what it

can’t do (i.e., what you don’t need to do)

End user just needs to implement two functions: mapper and reducer

No exposure of interprocess communication, data splitting, data locality,

redundancy mechanisms (can all be handled by underlying system)

28

Disadvantages of MapReduce

Can be extremely slow: in traditional MapReduce, resilience is attained by

reading/writing data from/to disk between each stage of processing

Sometimes you really do want communication between processes

Distributed data systems beyond MapReduce: Spark, GraphLab, parameter

servers, many others

All of them will frequently be slower than a single machine, if your data fits on the

disk of a single machine

29

Outline

Big data

Some context in distributed computing

map + reduce

MapReduce

MapReduce in Python (very briefly)

30

Practical MapReduce

(Obviously) you don’t want to write you own MapReduce execution engine, use one

of the many engines available

Python mrjob library: write simple mappers/reducers in Python, and execute on

Hadoop systems, Amazon Elastic MapReduce, Google Cloud

Word occurrence count example:

31

from mrjob.job import MRJob

class WordOccurrenceCount(MRJob):

def mapper(self, _, line):

for word in line.split(" "):

yield word, 1

def reducer(self, key, values):

yield key, sum(values)

