
15-388/688 - Practical Data Science:

Deep learning

Pat Virtue

Carnegie Mellon University

Spring 2022

1Slide credits: CMU AI, Zico Kolter



Outline

Recent history in machine learning

Machine learning with neural networks

Training neural networks

Specialized neural network architectures

Deep learning in data science

2



Outline

Recent history in machine learning

Machine learning with neural networks

Training neural networks

Specialized neural network architectures

Deep learning in data science

3



AlexNet

“AlexNet” (Krizhevsky et al., 2012), winning entry of ImageNet 2012 competition 

with a Top-5 error rate of 15.3% (next best system with highly engineered features 

based got 26.1% error) 

4



AlphaGo

5



Google Translate

In November 2016, Google transitioned it’s translation service to a deep-learning-

based system, dramatically improved translation quality in many settings

6

Kilimanjaro is 19,710 feet of the 
mountain covered with snow, and it is 
said that the highest mountain in 
Africa. Top of the west, “Ngaje Ngai” in 
the Maasai language, has been referred 
to as the house of God. The top close to 
the west, there is a dry, frozen carcass 
of a leopard. Whether the leopard had 
what the demand at that altitude, there 
is no that nobody explained.

Kilimanjaro is a mountain of 19,710 
feet covered with snow and is said to 
be the highest mountain in Africa. 
The summit of the west is called 
“Ngaje Ngai” in Masai, the house of 
God. Near the top of the west there 
is a dry and frozen dead body of 
leopard. No one has ever explained 
what leopard wanted at that altitude.

https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html


Outline

Recent history in machine learning

Machine learning with neural networks

Training neural networks

Specialized neural network architectures

Deep learning in data science

7



Neural networks for machine learning

The term “neural network” largely refers to the hypothesis class part of a machine 

learning algorithm:

1. Hypothesis: non-linear hypothesis function, which involve compositions of 

multiple linear operators (e.g. matrix multiplications) and elementwise non-

linear functions

2. Loss: “Typical” loss functions for classification and regression: logistic, softmax

(multiclass logistic), hinge, squared error, absolute error

3. Optimization: Gradient descent, or more specifically, a variant called 

stochastic gradient descent we will discuss shortly

8



Linear hypotheses and feature learning

Until now, we have (mostly) considered machine learning algorithms that linear 
hypothesis class

ℎ𝜃 𝑥 = 𝜃𝑇𝜙 𝑥

where 𝜙:ℝ𝑛 → ℝ𝑘 denotes some set of typically non-linear features

Example: polynomials, radial basis functions, custom features like TFIDF (in many 
domains every 10 years or so there would be new feature types)

The performance of these algorithms depends crucially on coming up with good 
features 

Key question: can we come up with an algorithm that will automatically learn the 
features themselves?

9



Combining a set of linear functions

10



Feature learning, take one

Instead of a simple linear classifier, let’s consider a two-stage hypothesis class 

where one linear function creates the features and another produces the final 

hypothesis

ℎ𝜃 𝑥 = 𝑊2𝜙 𝑥 + 𝑏2 = 𝑊2 𝑊1𝑥 + 𝑏1 + 𝑏2,

𝜃 = 𝑊1 ∈ ℝ𝑘×𝑛, 𝑏1 ∈ ℝ𝑘 ,𝑊2 ∈ ℝ1×𝑘 , 𝑏2 ∈ ℝ

But there is a problem:

ℎ𝜃 𝑥 = 𝑊2 𝑊1𝑥 + 𝑏1 + 𝑏2 = ෩𝑊𝑥 + ෨𝑏

i.e., we are still just using a linear classifier (the apparent added complexity is 

actually not changing the underlying hypothesis function)

11



Neural networks

Neural networks are a simple extension of this idea, where we additionally apply a 

non-linear function after each linear transformation

ℎ𝜃 𝑥 = 𝑓2 𝑊2𝑓1 𝑊1𝑥 + 𝑏1 + 𝑏2

where 𝑓1, 𝑓2: ℝ → ℝ are a non-linear function (applied elementwise)

Common choices of 𝑓𝑖:

12

Hyperbolic tangent: 𝑓 𝑥 = tanh 𝑥 =
𝑒2𝑥−1

𝑒2𝑥+1

Sigmoid: 𝑓 𝑥 = 𝜎 𝑥 =
1

1+𝑒−𝑥

Rectified linear unit (ReLU): 𝑓 𝑥 = max 𝑥, 0



Illustrating neural networks

We can illustrate the form of neural networks using figures like the following

Middle layer 𝑧 is referred to as the hidden layer or activations

These are the learned features, nothing in the data prescribed what values they 

should take, left up to algorithm to decide

13



Deep learning

“Deep learning” refers (almost always) to machine learning using neural network 

models with multiple hidden layers

Hypothesis function for 𝑘-layer network

𝑧𝑖+1 = 𝑓𝑖 𝑊𝑖𝑧𝑖 + 𝑏𝑖 , 𝑧1 = 𝑥, ℎ𝜃 𝑥 = 𝑧𝑘

(note the 𝑧𝑖 here refers to a vector, not an entry into vector)
14



Properties of neural networks

A neural network will a single hidden layers (and enough hidden units) is a 

universal function approximator, can approximate any function over inputs

In practice, not that relevant (similar to how polynomials can fit any function), and 

the more important aspect is that they appear to work very well in practice for 

many domains

The hypothesis ℎ𝜃 𝑥 is not a convex function of parameters 𝜃 = {𝑊𝑖 , 𝑏𝑖}, so we 

have possibility of local optima

Architectural choices (how many layers, how they are connected, etc), become 

important algorithmic design choices (i.e. hyperparameters)

15



Why now?

17

Better models 

and algorithms

Lots of dataLots of 

computing 

power

Why such rapid progress?



Outline

Recent history in machine learning

Machine learning with neural networks

Training neural networks

Specialized neural network architectures

Deep learning in data science

18



Neural networks for machine learning

Hypothesis function: neural network

Loss function: “traditional” loss, e.g. logistic loss for binary classification:

ℓ ℎ𝜃 𝑥 , 𝑦 = log 1 + exp −𝑦 ⋅ ℎ𝜃 𝑥

Optimization: How do we solve the optimization problem

minimize
𝜃

෍

𝑖=1

𝑚

ℓ ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖

Just use gradient descent as normal (or rather, a version called stochastic gradient 

descent)

19



Stochastic gradient descent

Key challenge for neural networks: often have very large number of samples, 

computing gradients can be computationally intensive.

Traditional gradient descent computes the gradient with respect to the sum over all 

examples, then adjusts the parameters in this direction

𝜃 ≔ 𝜃 − 𝛼෍

𝑖=1

𝑚

𝛻𝜃ℓ(ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖

Alternative approach, stochastic gradient descent (SGD): adjust parameters based 

upon just one sample

𝜃 ≔ 𝜃 − 𝛼𝛻𝜃ℓ ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖

and then repeat these updates for all samples
20



Gradient descent vs. SGD

Gradient descent, repeat:
• For 𝑖 = 1,… ,𝑚:

𝑔 𝑖 ← 𝛻𝜃ℓ ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖

• Update parameters:

𝜃 ← 𝜃 − 𝛼෍

𝑖=1

𝑚

𝑔 𝑖

Stochastic gradient descent, repeat:
• For 𝑖 = 1,… ,𝑚:

𝜃 ← 𝜃 − 𝛻𝜃ℓ ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖

In practice, stochastic gradient descent uses a small collection of samples, not just 
one, called a minibatch

21



Computing gradients: backpropagation

So, how do we compute the gradient 𝛻𝜃ℓ ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖 ?

Remember 𝜃 here denotes a set of parameters, so we’re really computing 

gradients with respect to all elements of that set

This is accomplished via the backpropagation algorithm

We won’t cover the algorithm in detail, but backpropagation is just an application of 

the (multivariate) chain rule from calculus, plus “caching” intermediate terms that, 

for instance, occur in the gradient of both 𝑊1 and 𝑊2

22



Training neural networks in practice

The other good news is also that you will rarely need to implement 

backpropagation yourself

Many libraries provides methods for you to just specify the neural network 

“forward” pass, and automatically compute the necessary gradients

Examples: Tensorflow, PyTorch

You’ll use one of these a bit on the homework

23



Outline

Recent history in machine learning

Machine learning with neural networks

Training neural networks

Specialized neural network architectures

Deep learning in data science

24



Specialized architectures

Very little of the current wave of enthusiasm for deep learning has actually come 

from the simple “fully connected” neural network model we have seen so far

Instead, most of the excitement has come from two more specialized architectures: 

convolutional neural networks, and recurrent neural networks

25



The problem with fully-connected networks

A 256x256 (RGB) image means ~200,000 dimensional input

Fully connected deep network would require a huge number of parameters, very 

likely to overfit to data

A generic deep network also doesn’t capture of the the “natural” invariances we 

expect in images (location, scale)

26



Convolutional neural networks

Constrain weights: require that activations in following layer be a “local” function of 

previous layer, and share weights across all locations

Also common to use max-pooling layers that take maximum over region

27



Convolutional networks in practice

Actually common to use “3D” convolutions to combine multiple channels, and use 
multiple convolutions at each layer to create different features

Convolutions are still linear operations, and we can take gradients using 
backpropagation in much the same manner

28



Predicting sequential data

In practice, we often want to predict a sequence of outputs given a sequence of 

inputs

Just predicting each output independently would miss crucial information

Many examples: time series forecasting, sentence labeling, part of speech tagging, 

etc

29



Recurrent neural networks

Maintain state over time, activations are a function of current input and previous

activations

30

𝑧𝑖+1
𝑡
= 𝑓𝑖 𝑊𝑖𝑥

𝑡 +𝑊𝑖
ℎ𝑧 𝑡−1 + 𝑏𝑖

ℎ𝜃 𝑥 𝑡 = 𝑧𝑘
𝑡



Recurrent neural networks in practice

Traditional RNNs have trouble capturing long-term dependencies

More typical to use a more complex hidden unit and activations, called a long short 

term memory (LSTM) network

31

Figure from 

(Jozefowicz

et al., 2015) 



Outline

Recent history in machine learning

Machine learning with neural networks

Training neural networks

Specialized neural network architectures

Deep learning in data science

32



Deep learning in data science

What role does deep learning have to play in data science?

33

Data problems we would like to solve

Unsolvable problems (50%)Solvable problems (50%)

Problems that need, e.g. 

new deep learning (5%)
Problems that can use “simple” 

machine learning (45%)



Solving data science problems with deep 

learning

When you come up against some machine learning problem with “traditional” 

features (i.e., human-interpretable characteristics of the data) do not try to solve it 

by applying deep learning methods first

Use linear regression/classification, linear regression/classification with non-linear 

features, or gradient boosting methods instead

If these still don’t solve your problem and you can visualize the data in a way that 

lets you solve it “manually”, or if you really want to squeeze out a 1-2% 

improvement in performance, then you can apply deep learning

34



The exceptions

However, it’s also undeniable that deep learning has made remarkable progress for 

structured data like images, audio, or text

For these types of data, you can use an already trained network as a feature 

extractor (i.e., a way of mapping the data to some alternatively, probably lower 

dimensional representation)

35



Example: Image processing with VGG

VGG network (Simonyan and 

Zisserman, 2015), trained on ImageNet 

1000-way classification of images

Given a new image classification 

problem, take pre-trained VGG 

network, take the last layer of weights, 

and use them as features

Can also “finetune” last few layers of a 

network to specialize to a new task

36

Published as a conference paper at ICLR 2015

Table 1: ConvNet configurations (shown in columns). The depth of the configurations increases
from the left (A) to the right (E), as more layers are added (the added layers are shown in bold). The
convolutional layer parameters are denoted as “conv⟨receptive field size⟩-⟨number of channels⟩”.
The ReLU activation function is not shown for brevity.

ConvNet Configuration

A A-LRN B C D E

11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers

input (224 × 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool

conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128 conv3-128

maxpool

conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv1-256 conv3-256 conv3-256
conv3-256

maxpool

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Table 2: Number of parameters (in millions).
Network A,A-LRN B C D E

Number of parameters 133 133 134 138 144

such layers have a 7 × 7 effective receptive field. So what have we gained by using, for instance, a
stack of three 3× 3 conv. layers instead of a single 7× 7 layer? First, we incorporate three non-linear
rectification layers instead of a single one, which makes the decision function more discriminative.
Second, we decrease the number of parameters: assuming that both the input and the output of a
three-layer 3 × 3 convolution stack has C channels, the stack is parametrised by 3 32C2 = 27C2

weights; at the same time, a single 7 × 7 conv. layer would require 72C2 = 49C2 parameters, i.e.
81% more. This can be seen as imposing a regularisation on the 7 × 7 conv. filters, forcing them to
have a decomposition through the 3 × 3 filters (with non-linearity injected in between).

The incorporation of 1 × 1 conv. layers (configuration C, Table 1) is a way to increase the non-
linearity of the decision function without affecting the receptive fields of the conv. layers. Even
though in our case the 1× 1 convolution is essentially a linear projection onto the space of the same
dimensionality (the number of input and output channels is the same), an additional non-linearity is
introduced by the rectification function. It should be noted that 1× 1 conv. layers have recently been
utilised in the “Network in Network” architecture of Lin et al. (2014).

Small-size convolution filters have been previously used by Ciresan et al. (2011), but their nets
are significantly less deep than ours, and they did not evaluate on the large-scale ILSVRC
dataset. Goodfellow et al. (2014) applied deep ConvNets (11 weight layers) to the task of
street number recognition, and showed that the increased depth led to better performance.
GoogLeNet (Szegedy et al., 2014), a top-performing entry of the ILSVRC-2014 classification task,
was developed independently of our work, but is similar in that it is based on very deep ConvNets

3

Figure from Simonyan and Zisserman, 2015



Example: text processing with word2vec

word2vec (Mikolov, et al., 2013) is a 

method developed for predicting 

surrounding words from a given word

To do so, it creates an “embedding” for 

every word that acts as a good 

surrogate for the things this word can 

mean, pre-trained versions available

Bottom line: instead of using bag of 

words, use word2vec to get a vector 

representation of each word in a corpus

37

Figure 1: The Skip-gram model architecture. The training objective is to learn word vector representations
that are good at predicting the nearby words.

In this paper we present several extensions of the original Skip-gram model. We show that sub-
sampling of frequent words during training results in a significant speedup (around 2x - 10x), and
improves accuracy of the representations of less frequent words. In addition, we present a simpli-
fied variant of Noise Contrastive Estimation (NCE) [4] for training the Skip-gram model that results
in faster training and better vector representations for frequent words, compared to more complex
hierarchical softmax that was used in the prior work [8].

Word representations are limited by their inability to represent idiomatic phrases that are not com-
positions of the individual words. For example, “Boston Globe” is a newspaper, and so it is not a
natural combination of the meanings of “Boston” and “Globe”. Therefore, using vectors to repre-
sent the whole phrases makes the Skip-gram model considerably more expressive. Other techniques
that aim to represent meaning of sentences by composing the word vectors, such as the recursive
autoencoders [15], would also benefit from using phrase vectors instead of the word vectors.

The extension from word based to phrase based models is relatively simple. First we identify a large
number of phrases using a data-driven approach, and then we treat the phrases as individual tokens
during the training. To evaluate the quality of the phrase vectors, we developed a test set of analogi-
cal reasoning tasks that contains both words and phrases. A typical analogy pair from our test set is
“Montreal”:“Montreal Canadiens”::“Toronto”:“Toronto Maple Leafs”. It is considered to have been
answered correctly if the nearest representation to vec(“Montreal Canadiens”) - vec(“Montreal”) +
vec(“Toronto”) is vec(“Toronto Maple Leafs”).

Finally, we describe another interesting property of the Skip-gram model. We found that simple
vector addition can often produce meaningful results. For example, vec(“Russia”) + vec(“river”) is
close to vec(“Volga River”), and vec(“Germany”) + vec(“capital”) is close to vec(“Berlin”). This
compositionality suggests that a non-obvious degree of language understanding can be obtained by
using basic mathematical operations on the word vector representations.

2 The Skip-gram Model

The training objective of the Skip-gram model is to find word representations that are useful for
predicting the surrounding words in a sentence or a document. More formally, given a sequence of
training words w1, w2, w3, . . . , wT , the objective of the Skip-gram model is to maximize the average
log probability

1

T

T

t = 1 − c≤ j ≤ c,j ̸= 0

logp(wt + j |wt ) (1)

where c is the size of the training context (which can be a function of the center word wt ). Larger
c results in more training examples and thus can lead to a higher accuracy, at the expense of the

2

Figure from Mikolov, et al., 2013



Example: text processing with BERT

BERT (Bidirectional Encoder Representations from Transformers), (Devlin et al., 

2018) trains a language model to predict missing elements of a sentence and 

predict one sentence from another for two sentence pairs

At application time, can fine-tune this generic model to many other possible tasks 

such as question answering, sentence classification, etc

38

Figure from 

Devlin, et al., 

2018


