15-388/688 - Practical Data Science:
Deep learning

Pat Virtue
Carnegie Mellon University
Spring 2022

Slide credits: CMU Al, Zico Kolter

Outline

Recent history in machine learning
Machine learning with neural networks
Training neural networks

Specialized neural network architectures

Deep learning in data science

Outline

Recent history in machine learning

AlexNet

X R - J
s R A
A e B . . v AR
. ol - g] -~ v g »
— o ['34 - ~
1\ A \
. “ . 4
)
ENRS . 0 .
3 - e r er
L1 \gense o lifeboat uar
192 128 204 2048 roac amphibian
13 fireboat u r car s
3 starfis drilling platform | a n
g ¢ (] - . / - rl
13 ense 4 . x .
| b 1) GESRERY. | . " |
1000 . 2 Py
2
X
L K

:..‘, - =3 q , ’ o 4 & -
¥ = 3 X A
= 13 h}. E n
?_‘E grille mushroom grape pider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus shire bullterrier indri
fire engine || dead-man’'s-fingers currant howler monkey

“AlexNet” (Krizhevsky et al., 2012), winning entry of ImageNet 2012 competition
with a Top-5 error rate of 15.3% (next best system with highly engineered features
based got 26.1% error)

AlphaGo

Artificial intelligence: Google's AlphaGo
beats Go master Lee Se-dol

®© 12 March 2016 Technology

ALPHAGO o eeee @ P
na- ® 00 ad 17 8 - LEE SEDOL
LIALEEY o 1§ 4 gee B |. 00.00:27

| ° o

Google Translate

In November 2016, Google transitioned it’s translation service to a deep-learning-
based system, dramatically improved translation quality in many settings

Kilimanjaro is 19,710 feet of the
mountain covered with snow, and it is
said that the highest mountain in
Africa. Top of the west, “Ngaje Ngai” in
the Maasai language, has been referred
to as the house of God. The top close to
the west, there is a dry, frozen carcass
of a leopard. Whether the leopard had
what the demand at that altitude, there
is no that nobody explained.

Kilimanjaro is a mountain of 19,710
feet covered with snow and is said to
be the highest mountain in Africa.
The summit of the west is called
“Ngaje Ngai” in Masai, the house of
God. Near the top of the west there
is a dry and frozen dead body of
leopard. No one has ever explained
what leopard wanted at that altitude.

https://www.nvtimes.com/2016/12/14/magazine/the-great-ai-awakening.htm|

https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

Outline

Machine learning with neural networks

Neural networks for machine learning

The term “neural network” largely refers to the hypothesis class part of a machine
learning algorithm:

1.

Hypothesis: non-linear hypothesis function, which involve compositions of
multiple linear operators (e.g. matrix multiplications) and elementwise non-
linear functions

Loss: “Typical” loss functions for classification and regression: logistic, softmax
(multiclass logistic), hinge, squared error, absolute error

Optimization: Gradient descent, or more specifically, a variant called
stochastic gradient descent we will discuss shortly

Linear hypotheses and feature learning

Until now, we have (mostly) considered machine learning algorithms that linear
hypothesis class

hg(x) = 0" (x)

where ¢: R® —» R denotes some set of typically non-linear features

Example: polynomials, radial basis functions, custom features like TFIDF (in many
domains every 10 years or so there would be new feature types)

The performance of these algorithms depends crucially on coming up with good
features

Key question: can we come up with an algorithm that will automatically learn the
features themselves?

Combining a set of linear functions

3.5

N N 0
o o o

Peak Demand (GW)

—
(&)

1.0
0 20 40 60 80 100

High Temperature (F)

10

Feature learning, take one

Instead of a simple linear classifier, let’'s consider a two-stage hypothesis class
where one linear function creates the features and another produces the final
hypothesis

hg(x) = Wop(x) + b, = Wo(Wix + by) + by,

0 ={w, € R*" b, € R¥, W, € RV*¥ b, € R}

But there is a problem:
ho(x) = Wo(Wyx + b)) + b, =Wx+b

..e., we are still just using a linear classifier (the apparent added complexity is
actually not changing the underlying hypothesis function)

11

Neural networks

Neural networks are a simple extension of this idea, where we additionally apply a
non-linear function after each linear transformation

ho(x) = f,(Wofy(Wix + by) + by)

where fi, fo: R = R are a non-linear function (applied elementwise)

Common choices of f;: U S
o 2% Nl |
Hyperbolic tangent: f(x) = tanh(x) = 2x+1 / ,

———————————————

Sigmoid: f(x) = o(x) =

0.0
—————————————

0.4} f

1+e_x 0.2} f so— e
35|
3.0

lllustrating neural networks

We can illustrate the form of neural networks using figures like the following

Middle layer z is referred to as the hidden layer or activations

These are the learned features, nothing in the data prescribed what values they
should take, left up to algorithm to decide

13

Deep learning

“Deep learning” refers (almost always) to machine learning using neural network
models with multiple hidden layers

5= a;/7 = /2’3\ 5_4)\

W W W o
O 2 oy

Hypothesis function for k-layer network
Ziy1 = fiWiz; + b)), z1=x, ho(x) =2z

(note the z; here refers to a vector, not an entry into vector)

Properties of neural networks

A neural network will a single hidden layers (and enough hidden units) is a
universal function approximator, can approximate any function over inputs

In practice, not that relevant (similar to how polynomials can fit any function), and

the more important aspect is that they appear to work very well in practice for
many domains

The hypothesis hg(x) is not a convex function of parameters 8 = {W;, b;}, so we
have possibility of local optima

Architectural choices (how many layers, how they are connected, etc), become
important algorithmic design choices (i.e. hyperparameters)

15

Better models
and algorithms

Why now?

Why such rapid progress?

Lots of
computing
power

Lots of data

17

Training neural networks

Outline

18

Neural networks for machine learning

Hypothesis function: neural network

Loss function: “traditional” loss, e.g. logistic loss for binary classification:
£(hg(x),y) = log(1 + exp(—y - ho(x)))

Optimization: How do we solve the optimization problem

m
minimize)" £(hg(x®),y®)
=1

Just use gradient descent as normal (or rather, a version called stochastic gradient
descent)

19

Stochastic gradient descent

Key challenge for neural networks: often have very large number of samples,
computing gradients can be computationally intensive.

Traditional gradient descent computes the gradient with respect to the sum over all
examples, then adjusts the parameters in this direction

m
0:=0— az ng(hg(x(i),y(i))

=1

Alternative approach, stochastic gradient descent (SGD): adjust parameters based
upon just one sample

=6 — avgf(hg(x(i)),y(i))
and then repeat these updates for all samples

20

Gradient descent vs. SGD

Gradient descent, repeat:
e Fori=1,.. m:
gD « Vgt(hg(x®),y®)

m
0«0 —aZg(i)
i=1

Stochastic gradient descent, repeat:
e Fori=1,.. m:

» Update parameters:

0« 0 —Vyt(hg(x®),yWD)

In practice, stochastic gradient descent uses a small collection of samples, not just
one, called a minibatch

21

Computing gradients: backpropagation

So, how do we compute the gradient Vg#(hg(x®),y®)?

Remember 8 here denotes a set of parameters, so we're really computing
gradients with respect to all elements of that set

This is accomplished via the backpropagation algorithm
We won't cover the algorithm in detail, but backpropagation is just an application of

the (multivariate) chain rule from calculus, plus “caching” intermediate terms that,
for instance, occur in the gradient of both W; and W,

22

Training neural networks in practice

The other good news is also that you will rarely need to implement
backpropagation yourself

Many libraries provides methods for you to just specify the neural network
“forward” pass, and automatically compute the necessary gradients

Examples: Tensorflow, PyTorch

You'll use one of these a bit on the homework

23

Outline

Specialized neural network architectures

24

Specialized architectures

Very little of the current wave of enthusiasm for deep learning has actually come
from the simple “fully connected” neural network model we have seen so far

Instead, most of the excitement has come from two more specialized architectures:
convolutional neural networks, and recurrent neural networks

25

The problem with fully-connected networks

A 256x256 (RGB) image means ~200,000 dimensional input

Fully connected deep network would require a huge number of parameters, very
likely to overtit to data

A generic deep network also doesn’t capture of the the “natural” invariances we
expect in images (location, scale)

/ Ri+1

NN

26

Convolutional neural networks

Constrain weights: require that activations in following layer be a “local” function of
previous layer, and share weights across all locations

Zi+1

%2 |
Wi

AN NN

Also common to use max-pooling layers that take maximum over region
Zi

/? Zi+1

max
/ 27

Convolutional networks In practice

Actually common to use “3D" convolutions to combine multiple channels, and use
multiple convolutions at each layer to create different features

24 Zj
“i+1 Zi+1
V'V vV
Y% (Wi AN/ (Wi)2

Convolutions are still linear operations, and we can take gradients using
backpropagation in much the same manner

Predicting sequential data

In practice, we often want to predict a sequence of outputs given a sequence of
iInputs

Just predicting each output independently would miss crucial information

Many examples: time series forecasting, sentence labeling, part of speech tagging,
etc

29

Recurrent neural networks

Maintain state over time, activations are a function of current input and previous
activations

T W T Wy T Ws
O) O) O . Z-(t) _ f-(W-x(t) + WhzE-1 4 b-)
QU O JOLWE, o e o
zél) Z§2> Zég)

Wi

W1 Wl

Recurrent neural networks In practice

Traditional RNNs have trouble capturing long-term dependencies

More typical to use a more complex hidden unit and activations, called a long short
term memory (LSTM) network

Cea

Figure from
(Jozefowicz
et al., 2015)

31

Deep learning in data science

Outline

32

Deep learning in data science

What role does deep learning have to play in data science?

Data problems we would like to solve

Solvable problems (50%) Unsolvable problems (50%)

/ \

Problems that can use “simple” Problems that need, e.g.
machine learning (45%) new deep learning (5%)

Solving data science problems with deep
learning

When you come up against some machine learning problem with “traditional”
features (i.e., human-interpretable characteristics of the data) do noft try to solve it
by applying deep learning methods first

Use linear regression/classification, linear regression/classification with non-linear
features, or gradient boosting methods instead

If these still don't solve your problem and you can visualize the data in a way that

lets you solve it “manually”, or if you really want to squeeze out a 1-2%
improvement in performance, then you can apply deep learning

34

The exceptions

However, it's also undeniable that deep learning has made remarkable progress for
structured data like images, audio, or text

For these types of data, you can use an already trained network as a feature
extractor (i.e., a way of mapping the data to some alternatively, probably lower
dimensional representation)

35

Example: Image processing with VGG

ConvNet Configuration
A A-LRN B C D E
11 weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
layers layers layers layers layers layers
input (224 x 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 [conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 [conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 [conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-1000

soft-max

Figure from Simonyan and Zisserman, 2015

VGG network (Simonyan and
Zisserman, 2015), trained on ImageNet
1000-way classification of images

Given a new image classification
problem, take pre-trained VGG
network, take the last layer of weights,
and use them as features

Can also “finetune” last few layers of a
network to specialize to a new task

36

Example: text processing with word2vec

Input projection output

w(t-2)

w(t-1)

w(t+1)

w(t+2)

Figure from Mikolov, et al., 2013

word2vec (Mikolov, et al., 2013) is a
method developed for predicting
surrounding words from a given word

To do so, it creates an “embedding” for
every word that acts as a good
surrogate for the things this word can
mean, pre-trained versions available

Bottom line: instead of using bag of
words, use word2vec to get a vector
representation of each word in a corpus

37

Example: text processing with BERT

KSP Mask LM Ma‘% LM \ /m MAD StartEnd SpaN
= &* P

e wfe o = = = o ’ .
=T et 2l n SERT Figure from
Ealsl- [Bll=l&l- &) Cale]. [EllmllE]. [&] Devlin, et al.,
Masked Sentence A Masked Sentence B Question Paragraph
> *
K Unlabeled Sentence A and B Pair J KK\\ Question Answer Pair J
Pre-training Fine-Tuning

BERT (Bidirectional Encoder Representations from Transformers), (Devlin et al.,
2018) trains a language model to predict missing elements of a sentence and
predict one sentence from another for two sentence pairs

At application time, can fine-tune this generic model to many other possible tasks
such as question answering, sentence classification, etc

38

