
15-388/688 - Practical Data Science:

Unsupervised learning

Pat Virtue

Carnegie Mellon University

Spring 2022

1Slide credits: CMU AI, Zico Kolter

Outline

Unsupervised learning

K-means

Principal Component Analysis

2

Outline

Unsupervised learning

K-means

Principal Component Analysis

3

Supervised learning paradigm

4

Training Data Machine learning algorithm Predictions

𝑥 1 , 𝑦 1

𝑥 2 , 𝑦 2

𝑥 3 , 𝑦 3

⋮

Hypothesis function

𝑦 𝑖 ≈ ℎ 𝑥 𝑖

New example 𝑥
ො𝑦 = ℎ(𝑥)

Unsupervised learning paradigm

5

Training Data Machine learning algorithm Predictions

𝑥 1

𝑥 2

𝑥 3

⋮

Hypothesis function

?≈ ℎ 𝑥 𝑖

New example 𝑥
?= ℎ(𝑥)

Three elements of unsupervised learning

It turns out the virtually all unsupervised learning algorithms can be considered in

the same manner as supervised learning:

1. Define hypothesis function

2. Define loss function

3. Define how to optimize the loss function

But, what do a hypothesis function and loss function signify in the unsupervised

setting?

6

Unsupervised learning framework

Input features: 𝑥 𝑖 ∈ ℝ𝑛, 𝑖 = 1,… ,𝑚

Model parameters: 𝜃 ∈ ℝ𝑘

Hypothesis function: ℎ𝜃: ℝ
𝑛 → ℝ𝑛, approximates input given input, i.e. we want 𝑥 𝑖 ≈

ℎ𝜃 𝑥 𝑖

Loss function: ℓ:ℝ𝑛 × ℝ𝑛 → ℝ+, measures the difference between a hypothesis and
actual input, e.g.: ℓ ℎ𝜃(𝑥), 𝑥 = ℎ𝜃 𝑥 − 𝑥 2

2

Similar canonical machine learning optimization as before:

minimize
𝜃

𝑖=1

𝑚

ℓ ℎ𝜃 𝑥 𝑖 , 𝑥 𝑖

7

Hypothesis and loss functions

The framework seems odd, what does it mean to have a hypothesis function

approximate the input?

Can’t we just pick ℎ𝜃 𝑥 = 𝑥?

The goal of unsupervised learning is to pick some restricted class of hypothesis

functions that extract some kind of structure from the data (i.e., one that does not

include the identity mapping above)

In this lecture, we’ll consider two different algorithms that both fit the framework: k-

means and principal component analysis

8

Outline

Unsupervised learning

K-means

Principal Component Analysis

9

K-means graphically

The k-means algorithm is easy to visualize: given some collection of data points we

want to find 𝑘 centers such that all points are close to at least one center

10

𝜇 2
𝜇 1

K-means in unsupervised framework

Parameters of k-means are the choice of centers 𝜃 = {𝜇 1 , … 𝜇 𝑘 }, with 𝜇 𝑖 ∈ ℝ𝑛

Hypothesis function outputs the center closest to a point 𝑥
ℎ𝜃 𝑥 = argmin

𝜇∈{𝜇 1 ,…𝜇 𝑘 }

𝜇 − 𝑥 2
2

Loss function is squared error between input and hypothesis

ℓ ℎ𝜃(𝑥), 𝑥 = ℎ𝜃 𝑥 − 𝑥 2
2

Optimization problem is thus

minimize
𝜇 1 ,…𝜇 𝑘

𝑖=1

𝑚

ℎ𝜃 𝑥 𝑖 − 𝑥 𝑖
2

2

11

K-means graphically

The k-means algorithm is easy to visualize: given some collection of data points we

want to find 𝑘 centers such that all points are close to at least one center

12

Optimizing k-means objective

The k-means objective is non-convex (possibility of local optima), and does not

have a closed form solution, so we resort to an approximate method, by repeating

the following (Lloyd’s algorithm, or just “k-means”)

1. Assign points to nearest cluster

2. Compute cluster center as mean of all points assigned to it

13

Given: Data set 𝑥 𝑖
𝑖=1,…,𝑚

, # clusters 𝑘

Initialize:

𝜇 𝑗 ← Random 𝑥 𝑖 , 𝑗 = 1,… , 𝑘

Repeat until convergence:

Compute cluster assignment:

𝑧 𝑖 = argmin
𝑗

𝜇 𝑗 − 𝑥 𝑖
2

2
, 𝑖 = 1, … ,𝑚

Re-compute means:

𝜇 𝑗 ← Mean 𝑥 𝑖 |𝑧 𝑖 = 𝑗 , 𝑗 = 1, … , 𝑘

K-means in a few lines of code

Scikit-learn, etc, contains k-means implementations, but again these are pretty

easy to write

For better implementation, want to check for convergence as well as max number

of iterations

14

def kmeans(X, k, max_iter=10):

Mu = X[np.random.choice(X.shape[0],k),:]

for i in range(max_iter):

D = -2*X@Mu.T + (X**2).sum(axis=1)[:,None] + (Mu**2).sum(axis=1)

C = np.eye(k)[np.argmin(D,axis=1),:]

Mu = (C.T @ X)/np.sum(C,axis=0)[:,None]

loss = np.linalg.norm(X - Mu[np.argmin(D,axis=1),:])**2

return Mu, C, loss

Convergence of k-means

15

Convergence of k-means

16

Convergence of k-means

17

Possibility of local optima

Since the k-means objective function has local optima, there is the chance that we

convert to a less-than-ideal local optima

Especially for large/high-dimensional datasets, this is not hypothetical: k-means will

usually converge to a different local optima depending on its starting point

18

Convergence of k-means (bad)

19

Convergence of k-means (bad)

20

Convergence of k-means (bad)

21

Addressing poor clusters

Many approaches to address potential poor clustering: e.g. randomly initialize

many times, take clustering with lowest loss

A common heuristic, k-means++: when initializing means, don’t select 𝜇 𝑖

randomly from all clusters, instead choose 𝜇 𝑖 sequentially, sampled with

probability proportion to the minimum squared distance to all other centroids

After these centers are initialized, run k-means as normal

22

K-means++

23

Given: Data set 𝑥 𝑖
𝑖=1,…,𝑚

, # clusters 𝑘

Initialize:

𝜇 1 ← Random 𝑥 1:𝑚

For 𝑗 = 2,… , 𝑘:

Select new cluster:

𝜇 𝑗 ← Random 𝑥 1:𝑚 , 𝑝 1:𝑚

where probabilities 𝑝 𝑖 given by

𝑝 𝑖 ∝ min
𝑗′<𝑗

𝜇 𝑗′ − 𝑥 𝑖

2

2

How to select k?

There’s no “right” way to select k (number of clusters): larger k virtually always will

have lower loss than smaller k, even on a hold out set

Instead, it’s common to look at the loss function as a function of increasing k, and

stop when things look “good” (lots of other heuristics, but they don’t convincingly

outperform this)

24

Example on real data

MNIST digit classification data set

60,000 images of digits, each 28x28

25

K-means run on MNIST

Means for k-means run with k=50 on MNIST data

26

K-means to “discover the number of clusters”?

Many papers/reports claim to use k-means (or some other unsupervised method)

to “discover” that there are k clusters in the data

This is usually just false: unless clusters are incredibly well-separated the k-means

objective cannot be used to discover “true” number of clusters with any accuracy

27

K-means centers on digits

with k=10 Objective vs. number of clusters

Outline

Unsupervised learning

K-means

Principal Component Analysis

28

Principal component analysis graphically

Principal component analysis (PCA) looks at “simplifying” the data in another

manner, by preserving the axes of major variation in the data

29

Dimensionality reduction with PCA

One of the standard uses for PCA is to reduce the dimension of the input data

(indeed, we motivated it this way)

If ℎ𝜃 𝑥 = 𝑈𝑊𝑥, then 𝑊𝑥 ∈ ℝ𝑘 is a “reduced” representation of 𝑥

30

𝑥

𝑊𝑥

𝑈𝑊𝑥

PCA in unsupervised setting

We’ll assume our data is normalized (each feature has zero mean, unit variance,
otherwise normalize it)

Hypothesis function:

ℎ𝜃 𝑥 = 𝑈𝑊𝑥, 𝜃 = 𝑈 ∈ ℝ𝑛×𝑘 ,𝑊 ∈ ℝ𝑘×𝑛

31

PCA in unsupervised setting

We’ll assume our data is normalized (each feature has zero mean, unit variance,
otherwise normalize it)

Hypothesis function:

ℎ𝜃 𝑥 = 𝑈𝑊𝑥, 𝜃 = 𝑈 ∈ ℝ𝑛×𝑘 ,𝑊 ∈ ℝ𝑘×𝑛

i.e., we are “compressing” input by multiplying by a low rank matrix

Loss function: same as for k-means, squared distance

ℓ ℎ𝜃(𝑥), 𝑥 = ℎ𝜃 𝑥 − 𝑥 2
2

Optimization problem:

minimize
𝑈,𝑊

𝑖=1

𝑚

𝑈𝑊𝑥 𝑖 − 𝑥 𝑖
2

2

32

Solving PCA optimization problem

The PCA optimization problem is also not convex, subject to local optima if we use

e.g. gradient descent

However, amazingly, we can solve this problem exactly using what is called a

singular value decomposition (all stated without proof)

33

Given: normalized data matrix 𝑋, # of components 𝑘

1. Compute singular value decomposition 𝑈𝑆𝑉𝑇 = 𝑋
where 𝑈, 𝑉 is orthogonal and 𝑆 is diagonal matrix of

singular values

2. Return 𝑈 = 𝑉:,1:𝑘𝑆1:𝑘,1:𝑘
−1 , 𝑊 = 𝑉:,1:𝑘

𝑇

3. Loss given by σ𝑖=𝑘+1
𝑛 𝑆𝑖𝑖

2

Code to solve PCA

PCA is just a few lines of code, but all the actual interesting elements are the SVD

call, if you’re not familiar with this (which is fine), then there won’t be too much

insight

34

def pca(X,k):

X0 = (X - np.mean(X, axis=0)) / np.std(X,axis=0) + 1e-8)

U,s,VT = np.linalg.svd(X0, compute_uv=True, full_matrices=False)

loss = np.sum(s[k:]**2)

return VT.T[:,:k]/s[:k], VT.T[:,:k], loss

Dimensionality reduction on MNIST

35

Top 50 principal components for MNIST

Images are reconstructed as linear combination of principal
components

36

Original images

37

Reconstructed images, k=2

38

Reconstructed images, k=10

39

Reconstructed images, k=100

40

Original images

41

K-means and PCA in data preparation

Although useful in their own right as unsupervised algorithms, K-means and PCA

are also useful in data preparation for supervised learning

Dimensionality reduction with PCA:

• Run PCA, get 𝑊 matrix

• Transform inputs to be 𝑥 𝑖 = 𝑊𝑥 𝑖

Radial basis functions with k-means

• Run k-means to extract 𝑘 centers, 𝜇 1 , … , 𝜇 𝑘

• Create radial basis function features 𝜙𝑗
𝑖
= exp −

𝑥 𝑖 −𝜇 𝑗
2

2

2𝜎2

42

