
15-388/688 - Practical Data Science:

Unsupervised learning

Pat Virtue

Carnegie Mellon University

Spring 2022

1Slide credits: CMU AI, Zico Kolter



Outline

Unsupervised learning

K-means

Principal Component Analysis

2



Outline

Unsupervised learning

K-means

Principal Component Analysis

3



Supervised learning paradigm
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Training Data Machine learning algorithm Predictions

𝑥 1 , 𝑦 1

𝑥 2 , 𝑦 2
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⋮

Hypothesis function

𝑦 𝑖 ≈ ℎ 𝑥 𝑖

New example 𝑥
ො𝑦 = ℎ(𝑥)



Unsupervised learning paradigm
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Three elements of unsupervised learning

It turns out the virtually all unsupervised learning algorithms can be considered in 

the same manner as supervised learning:

1. Define hypothesis function

2. Define loss function

3. Define how to optimize the loss function

But, what do a hypothesis function and loss function signify in the unsupervised 

setting?
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Unsupervised learning framework

Input features: 𝑥 𝑖 ∈ ℝ𝑛, 𝑖 = 1,… ,𝑚

Model parameters: 𝜃 ∈ ℝ𝑘

Hypothesis function: ℎ𝜃: ℝ
𝑛 → ℝ𝑛, approximates input given input, i.e. we want 𝑥 𝑖 ≈

ℎ𝜃 𝑥 𝑖

Loss function: ℓ:ℝ𝑛 × ℝ𝑛 → ℝ+, measures the difference between a hypothesis and 
actual input, e.g.: ℓ ℎ𝜃(𝑥), 𝑥 = ℎ𝜃 𝑥 − 𝑥 2

2

Similar canonical machine learning optimization as before:

minimize
𝜃



𝑖=1

𝑚

ℓ ℎ𝜃 𝑥 𝑖 , 𝑥 𝑖
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Hypothesis and loss functions

The framework seems odd, what does it mean to have a hypothesis function 

approximate the input?

Can’t we just pick ℎ𝜃 𝑥 = 𝑥?

The goal of unsupervised learning is to pick some restricted class of hypothesis 

functions that extract some kind of structure from the data (i.e., one that does not 

include the identity mapping above)

In this lecture, we’ll consider two different algorithms that both fit the framework: k-

means and principal component analysis
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K-means graphically

The k-means algorithm is easy to visualize: given some collection of data points we 

want to find 𝑘 centers such that all points are close to at least one center
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K-means in unsupervised framework

Parameters of k-means are the choice of centers 𝜃 = {𝜇 1 , … 𝜇 𝑘 }, with 𝜇 𝑖 ∈ ℝ𝑛

Hypothesis function outputs the center closest to a point 𝑥
ℎ𝜃 𝑥 = argmin

𝜇∈{𝜇 1 ,…𝜇 𝑘 }

𝜇 − 𝑥 2
2

Loss function is squared error between input and hypothesis

ℓ ℎ𝜃(𝑥), 𝑥 = ℎ𝜃 𝑥 − 𝑥 2
2

Optimization problem is thus

minimize
𝜇 1 ,…𝜇 𝑘



𝑖=1

𝑚

ℎ𝜃 𝑥 𝑖 − 𝑥 𝑖
2

2
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K-means graphically

The k-means algorithm is easy to visualize: given some collection of data points we 

want to find 𝑘 centers such that all points are close to at least one center
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Optimizing k-means objective

The k-means objective is non-convex (possibility of local optima), and does not 

have a closed form solution, so we resort to an approximate method, by repeating 

the following (Lloyd’s algorithm, or just “k-means”)

1. Assign points to nearest cluster

2. Compute cluster center as mean of all points assigned to it
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Given: Data set 𝑥 𝑖
𝑖=1,…,𝑚

, # clusters 𝑘

Initialize:

𝜇 𝑗 ← Random 𝑥 𝑖 , 𝑗 = 1,… , 𝑘

Repeat until convergence:

Compute cluster assignment:

𝑧 𝑖 = argmin
𝑗

𝜇 𝑗 − 𝑥 𝑖
2

2
, 𝑖 = 1, … ,𝑚

Re-compute means:

𝜇 𝑗 ← Mean 𝑥 𝑖 |𝑧 𝑖 = 𝑗 , 𝑗 = 1, … , 𝑘



K-means in a few lines of code

Scikit-learn, etc, contains k-means implementations, but again these are pretty 

easy to write

For better implementation, want to check for convergence as well as max number 

of iterations
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def kmeans(X, k, max_iter=10):

Mu = X[np.random.choice(X.shape[0],k),:]

for i in range(max_iter):

D = -2*X@Mu.T + (X**2).sum(axis=1)[:,None] + (Mu**2).sum(axis=1)

C = np.eye(k)[np.argmin(D,axis=1),:]

Mu = (C.T @ X)/np.sum(C,axis=0)[:,None]

loss = np.linalg.norm(X - Mu[np.argmin(D,axis=1),:])**2

return Mu, C, loss



Convergence of k-means

15



Convergence of k-means
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Convergence of k-means
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Possibility of local optima

Since the k-means objective function has local optima, there is the chance that we 

convert to a less-than-ideal local optima

Especially for large/high-dimensional datasets, this is not hypothetical: k-means will 

usually converge to a different local optima depending on its starting point
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Convergence of k-means (bad)
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Convergence of k-means (bad)
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Convergence of k-means (bad)

21



Addressing poor clusters

Many approaches to address potential poor clustering: e.g. randomly initialize 

many times, take clustering with lowest loss

A common heuristic, k-means++: when initializing means, don’t select 𝜇 𝑖

randomly from all clusters, instead choose 𝜇 𝑖 sequentially, sampled with 

probability proportion to the minimum squared distance to all other centroids

After these centers are initialized, run k-means as normal
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K-means++
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Given: Data set 𝑥 𝑖
𝑖=1,…,𝑚

, # clusters 𝑘

Initialize:

𝜇 1 ← Random 𝑥 1:𝑚

For 𝑗 = 2,… , 𝑘:

Select new cluster:

𝜇 𝑗 ← Random 𝑥 1:𝑚 , 𝑝 1:𝑚

where probabilities 𝑝 𝑖 given by

𝑝 𝑖 ∝ min
𝑗′<𝑗

𝜇 𝑗′ − 𝑥 𝑖

2

2



How to select k?

There’s no “right” way to select k (number of clusters): larger k virtually always will 

have lower loss than smaller k, even on a hold out set

Instead, it’s common to look at the loss function as a function of increasing k, and 

stop when things look “good” (lots of other heuristics, but they don’t convincingly 

outperform this)
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Example on real data

MNIST digit classification data set

60,000 images of digits, each 28x28
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K-means run on MNIST

Means for k-means run with k=50 on MNIST data
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K-means to “discover the number of clusters”?

Many papers/reports claim to use k-means  (or some other unsupervised method) 

to “discover” that there are k clusters in the data

This is usually just false: unless clusters are incredibly well-separated the k-means 

objective cannot be used to discover “true” number of clusters with any accuracy
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K-means centers on digits 

with k=10 Objective vs. number of clusters
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Principal component analysis graphically

Principal component analysis (PCA) looks at “simplifying” the data in another 

manner, by preserving the axes of major variation in the data
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Dimensionality reduction with PCA

One of the standard uses for PCA is to reduce the dimension of the input data 

(indeed, we motivated it this way)

If ℎ𝜃 𝑥 = 𝑈𝑊𝑥, then 𝑊𝑥 ∈ ℝ𝑘 is a “reduced” representation of 𝑥
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𝑥

𝑊𝑥

𝑈𝑊𝑥



PCA in unsupervised setting

We’ll assume our data is normalized (each feature has zero mean, unit variance, 
otherwise normalize it)

Hypothesis function: 

ℎ𝜃 𝑥 = 𝑈𝑊𝑥, 𝜃 = 𝑈 ∈ ℝ𝑛×𝑘 ,𝑊 ∈ ℝ𝑘×𝑛
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PCA in unsupervised setting

We’ll assume our data is normalized (each feature has zero mean, unit variance, 
otherwise normalize it)

Hypothesis function: 

ℎ𝜃 𝑥 = 𝑈𝑊𝑥, 𝜃 = 𝑈 ∈ ℝ𝑛×𝑘 ,𝑊 ∈ ℝ𝑘×𝑛

i.e., we are “compressing” input by multiplying by a low rank matrix

Loss function: same as for k-means, squared distance

ℓ ℎ𝜃(𝑥), 𝑥 = ℎ𝜃 𝑥 − 𝑥 2
2

Optimization problem:

minimize
𝑈,𝑊



𝑖=1

𝑚

𝑈𝑊𝑥 𝑖 − 𝑥 𝑖
2

2
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Solving PCA optimization problem

The PCA optimization problem is also not convex, subject to local optima if we use 

e.g. gradient descent

However, amazingly, we can solve this problem exactly using what is called a 

singular value decomposition (all stated without proof)
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Given: normalized data matrix 𝑋, # of components 𝑘

1. Compute singular value decomposition 𝑈𝑆𝑉𝑇 = 𝑋
where 𝑈, 𝑉 is orthogonal and 𝑆 is diagonal matrix of 

singular values

2. Return 𝑈 = 𝑉:,1:𝑘𝑆1:𝑘,1:𝑘
−1 , 𝑊 = 𝑉:,1:𝑘

𝑇

3. Loss given by σ𝑖=𝑘+1
𝑛 𝑆𝑖𝑖

2



Code to solve PCA

PCA is just a few lines of code, but all the actual interesting elements are the SVD 

call, if you’re not familiar with this (which is fine), then there won’t be too much 

insight
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def pca(X,k):

X0 = (X - np.mean(X, axis=0)) / np.std(X,axis=0) + 1e-8)

U,s,VT = np.linalg.svd(X0, compute_uv=True, full_matrices=False)

loss = np.sum(s[k:]**2)

return VT.T[:,:k]/s[:k], VT.T[:,:k], loss



Dimensionality reduction on MNIST
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Top 50 principal components for MNIST

Images are reconstructed as linear combination of principal 
components
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Original images
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Reconstructed images, k=2
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Reconstructed images, k=10
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Reconstructed images, k=100
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Original images
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K-means and PCA in data preparation

Although useful in their own right as unsupervised algorithms, K-means and PCA 

are also useful in data preparation for supervised learning

Dimensionality reduction with PCA:

• Run PCA, get 𝑊 matrix

• Transform inputs to be 𝑥 𝑖 = 𝑊𝑥 𝑖

Radial basis functions with k-means

• Run k-means to extract 𝑘 centers, 𝜇 1 , … , 𝜇 𝑘

• Create radial basis function features 𝜙𝑗
𝑖
= exp −

𝑥 𝑖 −𝜇 𝑗
2

2

2𝜎2
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