
Announcements

Tutorial

• Due Wed 4/6 (see Piazza for Google Survey form to submit)

• No slip days can be used

• (2) Peer feedback due Mon 4/11 Wed 4/13

Final project

• Details out soon

• Groups of 2-3 people

• Proposal due Wed 4/13 Fri 4/15

See course website for Tutorial, HW4, and Final project deadlines
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Plan

Today

• Hypothesis testing and experimental design

• Start with unsupervised learning
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Motivating setting

For a data science course, there has been very little “science” thus far…

“Science” as I’m using it roughly refers to “determining truth about the real world”
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Asking scientific questions

Suppose you work for a company that is considering a redesign of their website; 

does their new design (design B) offer any statistical advantage to their current 

design (design A)?

In linear regression, does a certain variable impact the response? (E.g. does 

energy consumption depend on whether or not a day is a weekday or weekend?)

In both settings, we are concerned with making actual statements about the nature 

of the world
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Sample statistics

To be a bit more consistent with standard statistics notation, we’ll introduce the 

notion of a population and a sample
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Population Sample

Mean

Variance

𝜇 = 𝐄[𝑋]

𝜎2 = 𝐄[ 𝑋 − 𝜇 2]

ҧ𝑥 =
1

𝑚
෍

𝑖=1

𝑚

𝑥 𝑖

𝑠2 =
1

𝑚− 1
෍

𝑖=1

𝑚

𝑥 𝑖 − ҧ𝑥
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Poll 1

Suppose we collect a new set of 𝑚 = 10 samples everyday. Will the sample mean 

for my 𝑚 = 10 samples be the same every day?
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Poll 2

Consider the same scenario where we collect a new set of 𝑚 samples everyday.

If we increase 𝑚, which of the following would we expect to happen?

A. The daily sample means will start be more consistent with each other

B. The daily sample means will start be less consistent with each other

C. The variance of the daily sample means will not change when 𝑚 increase
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Sample mean as random variable

The sample mean is an empirical average over 𝑚 independent samples from the 

distribution; it can also be considered as a random variable

This new random variable has the mean and variance

𝐄 ҧ𝑥 = 𝐄
1

𝑚
෍

𝑖=1

𝑚

𝑥 𝑖 =
1

𝑚
෍

𝑖=1

𝑚

𝐄 𝑋 = 𝐄 𝑋 = 𝜇
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Sample mean as random variable

The sample mean is an empirical average over 𝑚 independent samples from the 

distribution; it can also be considered as a random variable

This new random variable has the mean and variance

𝐄 ҧ𝑥 = 𝐄
1

𝑚
෍

𝑖=1

𝑚

𝑥 𝑖 =
1

𝑚
෍

𝑖=1

𝑚

𝐄 𝑋 = 𝐄 𝑋 = 𝜇

𝐕𝐚𝐫 ҧ𝑥 = 𝐕𝐚𝐫
1

𝑚
෍

𝑖=1

𝑚

𝑥 𝑖 =
1

𝑚2෍

𝑖=1

𝑚

𝐕𝐚𝐫[𝑋] =
𝜎2

𝑚

where we used the fact that for independent random variables 𝑋1, 𝑋2
𝐕𝐚𝐫 𝑋1 + 𝑋2 = 𝐕𝐚𝐫 𝑋1 + 𝐕𝐚𝐫 𝑋2

When estimating variance of sample, we use 𝑠2/𝑚 (the square root of this term is called 

the standard error) 14



Central limit theorem

Central limit theorem states further that ҧ𝑥 (for “reasonably sized” samples, in 

practice 𝑚 ≥ 30) actually has a Gaussian distribution regardless of the distribution 

of 𝑋

ҧ𝑥 → 𝒩 𝜇,
𝜎2

𝑚
or equivalently

ҧ𝑥 − 𝜇

𝜎/𝑚1/2
→ 𝒩(0,1)

In practice, for 𝑚 < 30 and for estimating 𝜎2 using sample variance, we use a 

Student’s t-distribution with 𝜈 = 𝑚 − 1 degrees of freedom

ҧ𝑥 − 𝜇

𝑠/𝑚1/2
→ 𝑇𝑚−1, 𝑝 𝑥; 𝜈 ∝ 1 +

𝑥2

𝜈

−
𝜈+1
2
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Aside: why the 𝑚 − 1 scaling?

We scale the sample variance by 𝑚 − 1 so that it is an unbiased estimate of the population 

variance

𝐄
1

𝑚
෍

𝑖=1

𝑚

𝑥 𝑖 − ҧ𝑥
2
=

𝐄
1

𝑚 − 1
෍

𝑖=1

𝑚

𝑥 𝑖 − ҧ𝑥
2
= 𝜎2

𝐄 ෍

𝑖=1

𝑚

𝑥 𝑖 − ҧ𝑥
2
= 𝑚 − 1 𝜎2
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variance

𝐄 ෍

𝑖=1

𝑚

𝑥 𝑖 − ҧ𝑥
2
= 𝐄 ෍

𝑖=1

𝑚

𝑥 𝑖 − 𝜇 − ҧ𝑥 − 𝜇
2

= 𝐄 ෍

𝑖=1

𝑚

𝑥 𝑖 − 𝜇
2
− 2 ҧ𝑥 − 𝜇 ෍

𝑖=1

𝑚

𝑥 𝑖 − 𝜇 +𝑚 ҧ𝑥 − 𝜇 2

= 𝐄 ෍

𝑖=1

𝑚

𝑥 𝑖 − 𝜇
2
−𝑚𝐄 ෍

𝑖=1

𝑚

ҧ𝑥 − 𝜇 2

= 𝑚𝐕𝐚𝐫 𝑋 −
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𝑚
= 𝑚 − 1 𝜎2
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Hypothesis testing

Using these basic statistical techniques, we can devise some tests to determine 

whether certain data gives evidence that some effect “really” occurs in the real 

world

Fundamentally, this is evaluating whether things are (likely to be) true about the 

population (all the data) given a sample

Lots of caveats about the precise meaning of these terms, to the point that many 

people debate the usefulness of hypothesis testing at all

But, still incredibly common in practice, and important to understand
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Hypothesis testing basics

Posit a null hypothesis 𝐻0 and an alternative hypothesis 𝐻1 (usually just that “𝐻0 is 

not true”

Given some data 𝑥, we want to accept or reject the null hypothesis in favor of the 

alternative hypothesis

20

𝑯𝟎 true 𝑯𝟏 true

Accept 𝑯𝟎 Correct
Type II error

(false negative)

Reject 𝑯𝟎
Type I error 

(false positive)
Correct

𝑝 reject 𝐻0 𝐻0 true = “significance of test”

𝑝 reject 𝐻0 𝐻1 true = “power of test”



Basic approach to hypothesis testing

Basic approach: compute the probability of observing the data under the null 

hypothesis (this is the p-value of the statistical test)

𝑝 = 𝑝 data 𝐻0 is true)

Reject the null hypothesis if the p-value is below the desired significance level 

(alternatively, just report the p-value itself, which is the lowest significance level we 

could use to reject hypothesis)

Important: p-value is 𝑝 data 𝐻0 is true) not 𝑝 𝐻0 is true data)
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Canonical example: t-test

Given a sample 𝑥 1 , … , 𝑥 𝑚 ∈ ℝ

𝐻0: 𝜇 = 0 (for population)
𝐻1: 𝜇 ≠ 0

By central limit theorem, we know that ҧ𝑥 − 𝜇 /(𝑠/𝑚
1

2) ∼ 𝑇𝑚−1 (Student’s t-

distribution with 𝑚− 1 degrees of freedom)

So we just compute 𝑡 = ҧ𝑥/ 𝑠/𝑚
1

2 (called test statistic), then compute 

𝑝 = 𝑝 𝑥 > 𝑡 + 𝑝 𝑥 < − 𝑡 = 𝐹 − 𝑡 + 1 − 𝐹 𝑡 = 2𝐹(− 𝑡 )

(where 𝐹 is cumulative distribution function of Student’s t-distribution)
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Visual example

What we are doing fundamentally is modeling the distribution 𝑝 ҧ𝑥 𝐻0 and then 

determining the probability of the observed ҧ𝑥 or a more extreme value
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Code in Python

Compute 𝑡 statistic and 𝑝 value from data
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import numpy as np

import scipy.stats as st

x = np.random.randn(m)

# compute t statistic and p value

xbar = np.mean(x)

s2 = np.sum((x - xbar)**2)/(m-1)

std_err = np.sqrt(s2/m)

t = xbar/std_err

t_dist = st.t(m-1)

p = 2*td.cdf(-np.abs(t))

# with scipy alone

t,p = st.ttest_1samp(x, 0)



Two-sided vs. one-sided tests

The previous test considered deviation from the null hypothesis in both directions 

(two-sided test), also possible to consider a one-sided test

𝐻0: 𝜇 ≥ 0 (for population)
𝐻1: 𝜇 < 0

Same 𝑡 statistic as before, but we only compute the area under the left side of the 

curve

𝑝 = 𝑝 𝑥 < 𝑡 = 𝐹(𝑡)
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Confidence intervals

We can also use the 𝑡 statistic to create confidence intervals for the mean

Because ҧ𝑥 has mean 𝜇 and variance 𝑠2/𝑚, we know that 1 − 𝛼 of its probability 

mass must lie within the range

ҧ𝑥 = 𝜇 ±
𝑠

𝑚1/2
⋅ 𝐹−1 1 −

𝛼

2
≡ 𝜇 ± 𝐶𝐼 𝑠,𝑚, 𝛼

⟺ 𝜇 = ҧ𝑥 ± 𝐶𝐼 𝑠,𝑚, 𝛼

where 𝐹−1 denotes the inverse CDF function of 𝑡-distribution with 𝑚 − 1 degrees 

of freedom
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# simple confidence interval compuation

CI = lambda s,m,a : s / np.sqrt(m) * st.t(m-1).ppf(1-a/2)
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Experimental design: A/B testing

Up until now, we have assumed that the null hypothesis is given by some known

mean, but in reality, we may not know the mean that we want to compare to

Example: we want to tell if some additional feature on our website makes user stay 

longer, so we need to estimate both how long users stay on the current site and 

how long they stay on redesigned site

Standard approach is A/B testing: create a control group (mean 𝜇1) and a 

treatment group (mean 𝜇2)

𝐻0: 𝜇1 = 𝜇2 or e. g. 𝜇1≥ 𝜇2
𝐻1: 𝜇1 ≠ 𝜇2 or e. g. 𝜇1< 𝜇2
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Independent 𝑡-test (Welch’s 𝑡-test)

Collect samples (possibly different numbers) from both populations

𝑥1
1
, … , 𝑥1

𝑚1 , 𝑥2
1
, … , 𝑥2

𝑚2

compute sample mean ҧ𝑥1, ҧ𝑥2 and sample variance 𝑠1
2, 𝑠2

2 for each group 

Compute test statistic

𝑡 =
ҧ𝑥1 − ҧ𝑥2

𝑠1
2/𝑚1 + 𝑠2

2/𝑚2
1/2

And evaluate using a t distribution with degrees of freedom given by

𝑠1
2/𝑚1 + 𝑠2

2/𝑚2
2

𝑠1
2/𝑚1

2

𝑚1 − 1
+

𝑠2
2/𝑚2

2

𝑚2 − 1
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Starting to seem a bit ad-hoc?

There are a huge number of different tests for different situations

You probably won’t need to remember these, and can just look up whatever test is 

most appropriate for your given situation

But the basic idea in call cases is the same: you’re trying to find the distribution of 

your test statistic under the hull hypothesis, and then you are computing the 

probability of the observed test statistic or something more extreme

All the different tests are really just about different distributions based upon your 

problem setup
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Hypothesis testing in linear regression

One last example (because it’s useful in practice): consider the linear regression 

𝑦 ≈ 𝜃𝑇𝑥, and suppose we want to perform a hypothesis test on the coefficients of 

𝜃

Example: suppose that instead of just two websites, you have a website with 

multiple features that can be turned on/off, and your sample data includes a wide 

variety of different samples

We would like to ask the question: is the 𝑖th variable relevant for predicting the 

output?

We’ve already seen ways we can do this (i.e., evaluate cross-validation error, but 

it’s a bit difficult to understand what this means)
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Formula for sample variance in linear 

regression
There is an analogous formula for sample variance on the errors that a linear regression 
model makes

𝑠2 =
1

𝑚 − 𝑛
෍

𝑖=1

𝑚

𝑦 𝑖 − 𝜃𝑇𝑥 𝑖 2

Use this to determine sample covariance of coefficients

𝐂𝐨𝐯 𝜃 = 𝑠2 𝑋𝑇𝑋 −1

Can then evaluate null hypothesis 𝐻0: 𝜃𝑖 = 0, using t statistic

𝑡 = 𝜃𝑖/𝐂𝐨𝐯 𝜃 𝑖,𝑖
1/2

Similar procedure to get confidence intervals of coefficients
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P-values considered harmful

A basic problem is that 𝑝 data 𝐻0 ≠ 𝑝(𝐻0|data) (despite being frequently 

interpreted as such)

People treat 𝑝 < 0.05 with way too much importance
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Histogram of p values from ~3,500 

published journal papers

(from E. J. Masicampo and Daniel 

Lalande, A peculiar prevalence of p 

values just below .05, 2012)


