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Challenge
Assume that exam scores are drawn independently from the same Gaussian 

(Normal) distribution.

Given three exam scores 75, 80, 90, which pair of parameters is a better fit?

A) Mean 80, standard deviation 3

B) Mean 85, standard deviation 7

Use a calculator/computer.

Gaussian PDF: 𝑝 𝑥 ∣ 𝜇, 𝜎2 =
1

2𝜋𝜎2
𝑒
−

𝑥−𝜇 2

2𝜎2



Estimating the parameters of distributions

We’re moving now from probability to statistics
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Estimating the parameters of distributions

We’re moving now from probability to statistics

The basic question: given some data 𝑥 1 , … , 𝑥 𝑚 , how do I find a distribution that 

captures this data “well”?

In general (if we can pick from the space of all distributions), this is a hard question, 

but if we pick from a particular parameterized family of distributions 𝑝 𝑋; 𝜃 , the 

question is (at least a little bit) easier

Question becomes: how do I find parameters 𝜃 of this distribution that fit the data?
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Maximum likelihood estimation

Given a distribution 𝑝 𝑋; 𝜃 , and a collection of observed (independent) data points 
𝑥 1 , … , 𝑥 𝑚 , the probability of observing this data is simply

𝑝 𝑥 1 , … , 𝑥 𝑚 ; 𝜃 =ෑ

𝑖=1

𝑚

𝑝 𝑥 𝑖 ; 𝜃

Basic idea of maximum likelihood estimation (MLE): find the parameters that 
maximize the probability of the observed data

maximize
𝜃

ෑ

𝑖=1

𝑚

𝑝 𝑥 𝑖 ; 𝜃 ≡ maximize
𝜃

ℓ 𝜃 =෍

𝑖=1

𝑚

log 𝑝 𝑥 𝑖 ; 𝜃

where ℓ 𝜃 is called the log likelihood of the data

Seems “obvious”, but there are many other ways of fitting parameters
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Parameter estimation for Bernoulli

Simple example: Bernoulli distribution

𝑝 𝑋 = 1;𝜙 = 𝜙, 𝑝 𝑋 = 0;𝜙 = 1 − 𝜙

Given observed data 𝑥 1 , … , 𝑥 𝑚 , the “obvious” answer is:

෠𝜙 =
#1’s

# Total
=
σ𝑖=1
𝑚 𝑥 𝑖

𝑚

But why is this the case?

Maybe there are other estimates that are just as good, i.e.?

𝜙 =
σ𝑖=1
𝑚 𝑥 𝑖 + 1

𝑚 + 2
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Likelihood for Bernoulli

The likelihood for Bernoulli is given by

𝐿 𝜙 =ෑ

𝑖=1

𝑚

𝑝 𝑥 𝑖 ; 𝜙

Let’s say we have a dataset of 3 heads and 2 tails:
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𝑥

(1) 1

(2) 1

(3) 0

(4) 0

(5) 1



MLE for Bernoulli

Maximum likelihood solution for Bernoulli is given by

maximize
𝜙

ෑ

𝑖=1

𝑚

𝑝 𝑥 𝑖 ; 𝜙 = maximize
𝜙

ෑ

𝑖=1

𝑚

𝜙𝑥 𝑖
1 − 𝜙 1−𝑥 𝑖

Taking the negative log of the optimization objective (just to be consistent with our usual 
notation of optimization as minimization)

maximize
𝜙

ℓ 𝜙 =෍

𝑖=1

𝑚

𝑥 𝑖 log𝜙 + 1 − 𝑥 𝑖 log 1 − 𝜙

Derivative with respect to 𝜙 is given by

𝑑

𝑑𝜙
ℓ 𝜙 =෍

𝑖=1

𝑚
𝑥 𝑖

𝜙
−
1 − 𝑥 𝑖

1 − 𝜙
=
σ𝑖=1
𝑚 𝑥 𝑖

𝜙
−
σ𝑖=1
𝑚 (1 − 𝑥 𝑖 )

1 − 𝜙
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MLE for Bernoulli, continued

Setting derivative to zero gives:

σ𝑖=1
𝑚 𝑥 𝑖

𝜙
−
σ𝑖=1
𝑚 (1 − 𝑥 𝑖 )

1 − 𝜙
≡
𝑎

𝜙
−

𝑏

1 − 𝜙
= 0

⟹ 1−𝜙 𝑎 = 𝜙𝑏

⟹𝜙 =
𝑎

𝑎 + 𝑏
=
σ𝑖=1
𝑚 𝑥 𝑖

𝑚

So, we have shown that the “natural” estimate of 𝜙 actually corresponds to the 

maximum likelihood estimate
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MLE for Gaussian, briefly

For Gaussian distribution

𝑝 𝑥; 𝜇, 𝜎2 = 2𝜋𝜎2 −1/2 exp − 1/2 𝑥 − 𝜇 2/𝜎2

Log likelihood given by:

ℓ 𝜇, 𝜎2 = −𝑚
1

2
log 2𝜋𝜎2 −

1

2
෍

𝑖=1

𝑚
𝑥 𝑖 − 𝜇

2

𝜎2

Derivatives (see if you can derive these fully):

𝑑

𝑑𝜇
ℓ 𝜇, 𝜎2 = −

1

2
෍

𝑖=1

𝑚
𝑥 𝑖 − 𝜇

𝜎2
= 0 ⟹ 𝜇 =

1

𝑚
෍

𝑖=1

𝑚

𝑥 𝑖

𝑑

𝑑𝜎2
ℓ 𝜇, 𝜎2 = −

𝑚

2𝜎2
+
1

2
෍

𝑖=1

𝑚
𝑥 𝑖 − 𝜇

2

𝜎2 2 = 0 ⟹ 𝜎2 =
1

𝑚
෍

𝑖=1

𝑚

𝑥 𝑖 − 𝜇
2
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SPAM Classification
Example

Training Data

Spam? E-mail body

1 Money is free now

0 Pat teach 388

0 Pat free to teach

1 Sir money to teach

1 Pat free money now

0 Teach 388 now

0 Pat to teach 301

Vocabulary

388

free

is

money

now

Pat

Sir

teach

to

tomorrow

Test Data

Spam? E-mail body

Pat teach now



Poll 1
Assume:

𝑌 is a binary random variable representing whether or not the email is spam, and 

𝑋𝑖 is a binary random variable representing whether or not the 𝑖-th word is in the 

email.

With a vocabulary of size 10, how may probability values are in the following 

probability table?

𝑃 𝑌 ∣ 𝑋1, … , 𝑋10
A. 10
B. 11
C. 110
D. 22
E. 210

F. 211

Vocabulary

388

free

is

money

now

Pat

Sir

teach

to

tomorrow

1

2

3

4

5

6

7

8

9

10



Naive Bayes modeling

Naive Bayes is a machine learning algorithm that rests relies heavily on 

probabilistic modeling

But, it is also interpretable according to the three ingredients of a machine learning 

algorithm (hypothesis function, loss, optimization), more on this later

Basic idea is that we model input and output as random variables 𝑋 =
𝑋1, 𝑋2, … , 𝑋𝑛 (several Bernoulli, categorical, or Gaussian random variables), and 

𝑌 (one Bernoulli or categorical random variable), goal is to find 𝑝(𝑌|𝑋)
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Naive Bayes assumptions

We’re going to find 𝑝 𝑌 𝑋 via Bayes’ rule

𝑝 𝑌 𝑋 =
𝑝 𝑋 𝑌 𝑝 𝑌

𝑝 𝑋
=

𝑝 𝑋 𝑌 𝑝 𝑌

σ𝑦 𝑝(𝑋|𝑦) 𝑝 𝑦

The denominator is just the sum over all values of 𝑌 of the distribution specified by the 
numeration, so we’re just going to focus on the 𝑝 𝑋 𝑌 𝑝 𝑌 term

Modeling full distribution 𝑝(𝑋|𝑌) for high-dimensional 𝑋 is not practical, so we’re going to 
make the naive Bayes assumption, that the elements 𝑋𝑖 are conditionally independent 
given 𝑌

𝑝 𝑋 𝑌 =ෑ

𝑖=1

𝑛

𝑝 𝑋𝑖 𝑌
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Poll 2
Assume:

𝑌 is a binary random variable representing whether or not the email is spam, and 

𝑋𝑖 is a binary random variable representing whether or not the 𝑖-th word is in the 

email.

True or False: 𝑃 𝑋1 = 1 ∣ 𝑌 = 0 = 𝑃 𝑋1 = 1 ∣ 𝑌 = 1

Vocabulary

388

free

is

money

now

Pat

Sir

teach

to

tomorrow

1

2

3

4

5

6

7

8

9

10



Modeling individual distributions

We’re going to explicitly model the distribution of each 𝑝 𝑋𝑖 𝑌 as well as 𝑝(𝑌)

We do this by specifying a distribution for 𝑝(𝑌) and a separate distribution and for each 
𝑝(𝑋𝑖|𝑌 = 𝑦)

So assuming, for instance, that 𝑌𝑖 and 𝑋𝑖 are binary (Bernoulli random variables), then we 
would represent the distributions

𝑝 𝑌;𝜙𝑌=1 , 𝑝 𝑋𝑖 𝑌 = 0;𝜙𝑌=0,𝑖), 𝑝 𝑋𝑖 𝑌 = 1;𝜙𝑌=1,𝑖

We then estimate the parameters of these distributions using MLE, i.e.

𝜙𝑌=1 =
σ𝑗=1
𝑚 𝑦 𝑗

𝑚
, 𝜙𝑦,𝑖 =

σ𝑗=1
𝑚 𝑥𝑖

𝑗
⋅ 𝟙{𝑦 𝑗 = 𝑦}

σ𝑗=1
𝑚 𝟙{𝑦 𝑗 = 𝑦}
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Making predictions

Given some new data point 𝑥, we can now compute the probability of each class

𝑝 𝑌 = 𝑦 𝑥 ∝ 𝑝 𝑌 = 𝑦 ෑ

𝑖=1

𝑛

𝑝 𝑥𝑖 𝑌 = 𝑦 = 𝜙𝑦ෑ

𝑖=1

𝑛

𝜙𝑦,𝑖
𝑥𝑖

1 − 𝜙1
𝑦 1−𝑥𝑖

After you have computed the right-hand side, just normalize (divide by the sum 

over all 𝑦) to get the desired probability

Alternatively, if you just want to know the most likely 𝑌, just compute each righ-

hand side and take the maximum
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Example
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𝑌 𝑋1 𝑋2

0 0 0

1 1 0

0 0 1

1 1 1

1 1 0

0 1 0

1 0 1

? 1 0

𝑝 𝑌 = 1 = 𝜙𝑌=1 =

𝑝 𝑋1 = 1 𝑌 = 0 = 𝜙𝑌=0,1 =

𝑝 𝑋1 = 1 𝑌 = 1 = 𝜙𝑌=1,1 =

𝑝 𝑋2 = 1 𝑌 = 0 = 𝜙𝑌=0,2 =

𝑝 𝑋2 = 1 𝑌 = 1 = 𝜙𝑌=1,2 =

𝑝 𝑌 𝑋1 = 1, 𝑋2 = 0 =



Potential issues

Problem #1: when computing probability, the product p 𝑦 ς𝑖=1
𝑛 𝑝(𝑥𝑖|𝑦) quickly goes to 

zero to numerical precision

Solution: compute log of the probabilities instead

log 𝑝(𝑦) +෍

𝑖=1

𝑛

log 𝑝 𝑥𝑖 𝑦

Problem #2: If we have never seen either 𝑋𝑖 = 1 or 𝑋𝑖 = 0 for a given 𝑦, then the 
corresponding probabilities computed by MLE will be zero

Solution: Laplace smoothing, “hallucinate” one 𝑋𝑖 = 0/1 for each class

𝜙𝑦,𝑖 =
σ𝑗=1
𝑚 𝑥𝑖

𝑗
⋅ 𝟙{𝑦 𝑗 = 𝑦} + 1

σ𝑗=1
𝑚 𝟙{𝑦 𝑗 = 𝑦} + 2
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Other distributions

Categorical class

Let 𝑌 be the random variable for a class that takes on one of 𝐾 possible categories 
{1,… , 𝐾} (rather than binary as we were doing before)

𝑃 𝑌 = 𝑦 = 𝜙𝑦 =
σ𝑗=1
𝑚 𝟙 𝑦(𝑗) = 𝑦

𝑚

24

𝑌 𝑋1 𝑋2

cat

dog

rat

rat

cat

cat

𝑌 𝑋1 𝑋2

1

2

3

3

1

1



Other distributions

Categorical feature conditioned on class

Assume the 𝑖-th feature takes on one of 𝐾 possible categories {1, … , 𝐾} (rather 
than binary as we were doing before)

𝑃(𝑋𝑖 = 𝑘 ∣ 𝑌 = 𝑦) = 𝜙𝑦,𝑖,𝑘 =
σ𝑗=1
𝑚 𝟙 𝑥𝑖

𝑗
= 𝑘 ⋅ 𝟙{𝑦 𝑗 = 𝑦}

σ𝑗=1
𝑚 𝟙{𝑦 𝑗 = 𝑦}
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𝑌 𝑋1 𝑋2

cat blue wood

dog blue metal

rat green metal

rat red paper

cat red wood

cat blue wood

𝑌 𝑋1 𝑋2

1 1 3

2 1 1

3 2 1

3 3 2

1 3 3

1 1 3



Other distributions

Though naive Bayes is often presented as “just” counting, the value of the 
maximum likelihood interpretation is that it’s clear how to model 𝑝(𝑋𝑖|𝑌) for non-
categorical random variables

Example: if 𝑥𝑖 is real-valued, we can model 𝑝(𝑋𝑖|𝑌 = 𝑦) as a Gaussian

𝑝 𝑥𝑖 𝑦; 𝜇
𝑦, 𝜎𝑦

2 = 𝒩(𝑥𝑖; 𝜇
𝑦 , 𝜎𝑦

2)

with maximum likelihood estimates

𝜇𝑦 =
σ𝑗=1
𝑚 𝑥𝑖

𝑗
⋅ 𝟙{𝑦 𝑗 = 𝑦}

σ𝑗=1
𝑚 𝟙{𝑦 𝑗 = 𝑦}

, 𝜎𝑦
2=

σ𝑗=1
𝑚 (𝑥𝑖

𝑗
−𝜇𝑦)2 ⋅ 𝟙{𝑦 𝑗 = 𝑦}

σ𝑗=1
𝑚 𝟙{𝑦 𝑗 = 𝑦}

All probability computations are exactly the same as before (it doesn’t matter that 
some of the terms are probability densities)
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Other distributions

Gaussian features conditioned on class

𝜇𝑦 =
σ𝑗=1
𝑚 𝑥𝑖

𝑗
⋅ 𝟙{𝑦 𝑗 = 𝑦}

σ𝑗=1
𝑚 𝟙{𝑦 𝑗 = 𝑦}

, 𝜎𝑦
2=

σ𝑗=1
𝑚 (𝑥𝑖

𝑗
−𝜇𝑦)^2 ⋅ 𝟙{𝑦 𝑗 = 𝑦}

σ𝑗=1
𝑚 𝟙{𝑦 𝑗 = 𝑦}
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𝐸𝑥𝑎𝑚 𝑋1 𝑋2

1 90 30

2 85 60

3 70 20

3 60 25

1 80 50

1 90 40

Score Time
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Machine learning via maximum likelihood

Many machine learning algorithms (specifically the loss function component) can 

be interpreted probabilistically, as maximum likelihood estimation

Recall logistic regression:

minimize
𝜃

෍

𝑖=1

𝑚

ℓlogistic(ℎ𝜃(𝑥
𝑖 ) , 𝑦 𝑖 )

ℓlogistic ℎ𝜃 𝑥 , 𝑦 = log(1 + exp −𝑦 ⋅ ℎ𝜃 𝑥
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Logistic probability model

Consider the model (where 𝑌 is binary taking on −1,+1 values)

𝑝 𝑦 𝑥; 𝜃 = logistic 𝑦 ⋅ ℎ𝜃 𝑥 =
1

1 + exp(−𝑦 ⋅ ℎ𝜃 𝑥 )

Under this model, the maximum likelihood estimate is

maximize
𝜃

෍

𝑖=1

𝑚

log 𝑝 𝑦 𝑖 𝑥 𝑖 ; 𝜃) ≡minimize
𝜃

෍

𝑖=1

𝑚

ℓlogistic(ℎ𝜃(𝑥
𝑖 ) , 𝑦 𝑖 )
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Least squares

In linear regression, assume 

𝑦 = 𝜃𝑇𝑥 + 𝜖, 𝜖 ∼ 𝒩 0, 𝜎2

⟺ 𝑝 𝑦 𝑥; 𝜃 = 𝒩 𝜃𝑇𝑥, 𝜎2

Then the maximum likelihood estimate is given by

maximize
𝜃

෍

𝑖=1

𝑚

log 𝑝 𝑦 𝑖 𝑥 𝑖 ; 𝜃) ≡minimize
𝜃

෍

𝑖=1

𝑚

𝑦 𝑖 − 𝜃𝑇𝑥 𝑖 2

i.e., the least-squares loss function can be viewed as MLE under Gaussian errors

Other approaches possible too: absolute loss function can be viewed as MLE 

under Laplace errors
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