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Basic probability and statistics

Thus far, in our discussion of machine learning, we have largely avoided any talk of
probability

This won't be the case any longer, understanding and modeling probabilities is a
crucial component of data science (and machine learning) MmC = s+at+ + Comp

For the purposes of this course: statistics = probability + data




Probablility and uncertainty in data science

In many prediction tasks, we never expect to be able to achieve perfect accuracy
(there is some inherent randomness at the level we can observe the data)

In these situations, it is important to understand the uncertainty associated with
our predictions

Peak Demand (GW)

High Temperature (F)
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Basic rules of probability



Random variables

A random variable (informally) is a variable whose value is not initial known

Instead, these variables can take on different values (including a possibly infinite number),
and must take on exactly one of these values, each with an associated probability, which
all together sum to one

O | 2 3
“Weather” takes on values {sunny, rainy, cloudy, snowy}
p(Weather = sunny) = 0.3 ?(Su.v\f\y\

p(Weather = rainy) = 0.2

Slightly different notation for continuous random variables, which we will discuss shortly



Notation for random variables

In this lecture, we use upper case letters, X to denote random variables

For a random variable X taking values £1,2,3} \)/
o(1) (1: 0.1 (X N=o.|
P[Z> p(X) =<2: 0.5 O( ZS’O >
P(3) i (304 \o(X»s\—*O‘v’ \

represents a mapping from values to probabilities numbers that sum to one (odd
notation, would be better to use py, but this is not common)

Conversely, we will use lower case x, to denote a specific value of X (i.e., for above
example x € {1,2,3}), anrjust p(x) refers to a number (the
corresponding entry of p(X 'y



Examples of probabllity notation

Given two random variables: X; with values in {1,2,3} and X, with values in {1,2}:

Ep(Xl,Xz) refers to the joint distribution, i.e., a set of 6 possible values for
each setting of variables, i.e. a dictionary mapping (1,1), (1,2), (2,1), ... to
corresponding probabilities)

~—> p(xq1,x,) is @a number: probability that X; = x; and X, = x,

— p(Xq1,x,) is a set of 3 values, the probabilities for all values of X; for the given
value X, = x,, i.e., it is a dictionary mapping 0,1,2 to numbers (note: not
probability distribution, it will not sum to one)

We generally call all of these terms factors (dictionaries mapping values to
numbers, even if they do not sum to one)



Example: weather and cavity

Let Weather denote a random variable taking on values in {sunny, rainy, cloudy} and
Cavity a random variables taking on values in {yes, no}

sunny,yes 0.07 J
sunny,no 0.63
rainy,yes 0.02
rainy,no 0.18
cloudy,yes 0.01
kcloudy, no 0.09 »

p(Weather, Cavity) =

p(sunny, yes) = 0.07
sunny 0.07

———> p(Weather,yes) = { rainy 0.02
cloudy 0.01



Conditional probabillity

The conditional probability p(X;|X,) (the conditional probability of X; given X,)

e

IS defined as

p(X1, X2)

p(X11X;) =

Can also be written p(Xy, X,) =€(X1|X2)‘p(X2)

Example:

p(X;) &—
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sun light 0.40
rain light 0.12
snow light 0.01
sun heavy 0.10
rain | heavy 0.28
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: . : : : Discrete Random Variables
Discrete Probability Distributions : | |
and their domains)
M € {my, m,}
S € {SlrSZ}
R € {r,r;}

no Pef’r{mnlkwpl"’“":

Conditional distribution

PM,S|r,) <—

() s?\rb
(m2 5o )02)
P(Ml DE zsz

lcons: CC, https://openclipart.org/detail/296791/pizza-slice




Discrete Random Variables

Discrete Probability Distributions

(and their domains)

Conditional distribution M € {m{, m,}
P(M S | 7"2) S € {SlrSZ}

/ // o

lcons: CC, https://openclipart.org/detail/296791/pizza-slice



Reminder:

Poll 1 . Capital letters:

random variables

Which of the following probability tables sum to one? that represent all

possible values
Select all that apply.  Lower-case letters:

\/ , represents a single
L PAlD) specific value

ii. P(A,b,C)

S iii. P(AC|b) = ?(A)C\BB
iv. P(a,cl|b) ?(\'JZ l \,\/b

v. P(alB,C)

vii P(c|A) z ?(C ]06

QQA 14



Answer Any Query from Joint Distribution

P(Weather)?

P(Weather | winter)?

P(Weather | winter, hot)?

Season | Temp | Weather | P(S, T, W)
summer hot sun 0.30
summer hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Answer Any Query from Joint Distribution

P(Weather)?
?(U Son)= B = \+ . |5 = ég

7 =2 Z p(s,t, 5an)

Seq ¢€T

‘P(\Jﬂo\"/\xr ) - P(U;SWB = ,3’5

—
Season | Temp | Weather | P(S, T, W)
summer | hot _sun @
summer | hot rain 0.05
summer | cold | _sun <0.102
summer | cold rain 0.05 |
winter hot sun
winter hot rain 0.05
winter cold _sun ( 0.152

L winter | cold rain 020 |



Answer Any Query from Joint Distribution

P(Weather | winter)?

?(\,J.{ju\v\ ]\Jiv\‘ftb
S N
)0+ 05 1154,20

P(\,me(’\ ‘ W 165 =

25

, 5

X

Season | Temp | Weather | P(S, T, W)
summer hot sun 0.30
summer hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot _sun_ @
winter hot rain 0.05
winter cola sun_ !I @
winter cold rain 0.20



Marginalization (a3 NALYIE

For random variables X, X, with joint distribution p(X;, X5)

PO = ) p(Xnx) = ) pllx)p(x),

B2 n

Generalizes to joint distributions over multiple random variables G/

p(Xq, ..., X;) = z p(Xq, o, X X1y oo X))

Xi+1,9Xn

For p to be a probability distribution, the marginalization over all variables must be one

Z p(xg, ..., xy) =1
X1, Xn
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Bayes’ rule

A straightforward manipulation of probabilities:

p(X11X3) =

19



Bayes’ rule

A straightforward manipulation of probabilities:

p(X1,X3) _ p(X21X1)p(Xy) _ p(X;1X1)p(Xy)
p(X3) p(X3) 2ix, P(X2[x1) p(x1)

p(X11X3) =

Y\E;ample: | want to know if | have come with with a rate strain of flu (occurring in
only 1/10,000 people). There is an “accurate” test for the flu (if | have the flu, it will
tell me | have 99% of the time, and if | do not have it, it will tell me | do not have it
99% of the time). | go to the doctor and test positive. What is the probability | have

the this flu?




Bayes' rule
J
Bayes rule p(X11Xy) = Pt
2
Example: | want to know if | have come with with a - p(X2|X)1()p(X1)
rate strain of flu (occurring in only 1/10.000 people). B p(§§| ,?2)19()(1)
There is an "accurate” test for the flu (if | have the flu, it T S, P(Xalx)p(xp)
will tell me | have 99% of the time, and if | do not have
it, it will tell me | do not have it 99% of the time). | go to
the doctor and test positive. What is the probability | f S EP“) ""‘S%
have the flu? + € %yfs) V\OS

?( F “Y ¢S ] TfPO’)\ ? {F{ 7(%: )/IO,aoo

T (F=no)= A9/ sos
?(Tfﬁoéff_fyes\:ﬁ‘l
(P(T‘:A cJ \ F:’\DB: ‘rT

21
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Do doctors understand test results?

By William Kremer
BBC World Service

© 7 July 2014

f

¥y © [ < shae

In one session, almost half the group of 160 gynaecologists responded that the
woman's chance of having cancer was nine in 10. Only 21% said that the figure
was one in 10 - which is the correct answer. That's a worse result than if the
doctors had been answering at random.

The fact that 90% of women with breast cancer get a positive result from a
mammogram doesn't mean that 90% of women with positive results have breast
cancer. The high false alarm rate, combined with the disease's prevalence of 1%,
means that roughly nine out of 10 women with a worrying mammogram don't
actually have breast cancer.

22



T-’D(X. X, 5= P IXDOTG)
=Plx, x) Rk,Jndependence

We say that random variables X; and X, are (marginally) independent if their
joint distribution is the product of their marginals

p(X,X,) = p(XDp(X) v~
P(X1|X2) — P(X1) \/
P(X2|X1) — P(Xz)

23



Independence

We say that random variables X; and X, are (marginally) independent if their
joint distribution is the product of their marginals

p(X1,X;) = p(X1)p(X32)
p(X1|X2) = p(Xy1)
p(X2|X1) = p(X3)

Showing equivalence:

p(X11X>) <= p(X1,X3) _ p(X1)p(X3)

p(X3) B p(X3)

) = p(Xy)

(and similarly) p(X,|X;) = p(X5)

24



Conditional independence

We say that random variables X; and X, are conditionally independent given

/X_&_ if
p(X1, X2|__§) P(X1__3_)P(X2_)£3)
—> P(X1|X2,,3) = P(X1L3)
p(X2|X1:_)£5_’,) = p(XzB(i)__
F S A

(F 1 A5 \o(A\ﬁS\:p(A)s\
rot Fua  not @ (Al + P @
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Conditional independence

We say that random variables X; and X, are conditionally independent given
X3, |if

p(X1, X21X3) = p(X1|X3)p(X21X3)
p(X11X3,X3) = p(X11|X3)
p(X21X1,X3) = p(X3|X3)

Showing equivalence:

p(X11X2,X5) <= p(X1, X21X3)  p(X1|X2)p(X2]X3)

P(le),(a) - p(X; |_X_3)

) = p(X1[X3)

26



Marginal and conditional independence

Important: Marginal independence does not imply conditional independence or

vice versa

Earthquake Burglary E’ _u_ B
R o
Alarm
< J LM | A
JohnCalls MaryCalls o

P(Earthquake|Burglary) = P(Earthquake) but
P(Earthquake|Burglary, Alarm) # P(Earthquake|Alarm)

P(JohnCalls|MaryCalls, Alarm) = P(JohnCalls|Alarm) but
P(JohnCalls|MaryCalls) # P(JohnCalls)

27



Marginal and conditional independence

Important: Marginal independence does not imply conditional independence or
vice versa

S F 1) C NoY (F_U,C\\S

b= P(c\P 1s) =+ P(C)5,)

28



X, 10,13
Operations on probabilities/factors  x, 3.1

&0 qo
f’@ﬂ 7;x> = p(X3 |X2) p(X, |X1)

‘P(X,:O))(Z:D)Xg:0> _ ,a(xg S0\ =) o(X, [%,20)

X‘ﬁ $0.. 33

29



Operations on probabilities/factors

We can perform operations on probabilities/factors by performing the operation on
every corresponding value in the probabilities/factors

For example, given three random variablesLXl,XZ,Xa:

p(X3 | X;3) (op) p(X, | X1)

denotes a factor over X1, X,, X5 (i.e., a dictionary over all possible combinations of
values these three random variables can take), where the value for x4, x,, x5 IS

given by J,

p(xs | x7) (0p) Pz 1 3)

30



Expectation

The expectation of a random variable is denoted: /

EX] = ) x-p(0)

X

where we use upper case X to emphasize that this is a function of the entire
random variable (but unlike p(X) is a number)

Note that this only makes sense when the values that the random variable takes on

are numerical (i.e., We can't ask for the expectation of the random variable
“Weather”)

Also generalizes to conditional expectation:

E[X1|x;] = 2951 'P(x1_|_x_2__)

X1 31



Rules of expectation

Expectation of sum is always equal to sum of expectations (even when variables
are not independent):

E[X; + X;] = z (x1 + x)p(x1, X2)

X1,X2

= Z X1 Z p(xq,x3) + 2 X2 Z p(x1, %)
X1 Xo X2 X1

32



Rules of expectation

If x1, x, Independent, expectation of products is product of expectations

E[X:X;] = Zfﬂcz p(x1,x7)

X1,X2

= > p()p()

xler

— z x1p(xq) z x2p(x2)

X1

— E[X1]E[X2]

33



Variance

Variance of a random variable is the expectation of the variable minus its
expectation, squared (X—' /DQ

Var[X] = E[(X — E[X])’] <= D (x- E[x])zpoc))

(X2 — 2XE[X] + E[X]?]
[X?] — E[X]?

E
E

Generalizes to covariance between two random variables
> Cov|[Xy,X,] = E[(X; — E[X;]D(X; — E[X;])]
= E[X,X,] — E[X; ]E[X;]

34



Infinite random variables

All the math above works the same for discrete random variables that can take on
an infinite number of values (for those with some math background, I'm talking
about countably infinite values here)

The only difference is that p(X) (obviously) cannot be specified by an explicit

dictionary mapping variable values to probabilities, need to specify a function that
produces probabilities

To be a probability, we still must have )., p(x) =1

Example:

1 k
=) ket

35



Continuous random variables

For random variables taking on continuous values (we'll only consider real-valued
distributions), we need some slightly different mechanisms

As with infinite discrete variables, the distribution p(X) needs to be specified as a
function: here is referred to as a probability density function (PDF) and it must
integrate to one [ p(x)dx =1

For any interval (a, b), we have that p(a < x < b) = f(fp(x)dx (with similar
generalization to multi-dimensional random variables)

Can also be specified by their cumulative distribution function (CDF), F(a) =
p(x <a) = [, p(x)

36



Some common distributions

Outline
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Bernoulli distribution

A simple distribution over binary {0,1} random variables
pX=L¢p)=¢, PX=0;¢)=1-¢

where ¢ € [0,1] is the parameter that governs the distribution

Expectation is just E[X] = ¢ (but not very common to refer to it this way, since this
would imply that the {0,1} terms are actual real-valued numbers)

38



Categorical distribution

This is the discrete distribution we've mainly considered so far, a distribute over
finite discrete elements with each probability specified

Written generically as:

p(X =i¢) =¢;
where ¢, ... ¢, € [0,1] are the parameters of the distribution (the probability of
each random variable, must sum to one)

Note: we could actually parameterize just using ¢4, ... ¢;_1, since this would
determine the last elements

Unless the actual numerical value of the i’s are relevant, it doesn’'t make sense to
take expectations of a categorical random variable

39



Gaussian distribution

Distribution over real-valued numbers, empirically the most commmon distribution in
all of data science (not in data itself, necessarily, but for people applying data

science), the standard “bell curve™:
0.45

© 055 u2= 0

~ 05 gt =1
0.10
0.05
0.00

Probability density function: Cr 0 2l
1 (x — p)?
p(x; u,o%) = (2ro2)i/2 exp (— P ) = N(x; u,0%)

with parameters u € R (mean) and o2 € R, (variance)

42



Multivariate Gaussians

The Gaussian distribution is one of the few distributions that generalizes nicely to
higher dimensions

We'll discuss this in much more detail when we talk about anomaly detection and
the mixture of Gaussians model, but for now, just know that we can also write a
distribution over random vectors x € R"

1
|27TZ|1/2 eXp(—(x R H)Tz_l(x _ ,Ll))

p(x;u,2) =

where u € R™ is mean and X € R™*" is covariance matrix, and |-| denotes the
determinant of a matrix

43



Laplace distribution

Like a Gaussian but with absolute instead of squared difference, gives the
distribution (relatively) “heavy tails”

0.5
0.4
= 03
0.2
0.1
0.0

o=
= O

Probability density function:
1 lx — ul

with parameters u (mean), b (variance is 2b?)
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Some additional examples

Student’s t distribution — distribution governing estimation of normal distribution
from finite samples, commonly used in hypothesis testing

x? (chi-squared) distribution — distribution of Gaussian variable squared, also used
INn hypothesis testing

Cauchy distribution — very heavy tailed distribution, to the point that variables have
undefined expectation (the associated integral is undefined)

46



