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Basic probability and statistics

Thus far, in our discussion of machine learning, we have largely avoided any talk of 

probability

This won’t be the case any longer, understanding and modeling probabilities is a 

crucial component of data science (and machine learning)

For the purposes of this course: statistics = probability + data
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Probability and uncertainty in data science

In many prediction tasks, we never expect to be able to achieve perfect accuracy 

(there is some inherent randomness at the level we can observe the data)

In these situations, it is important to understand the uncertainty associated with 

our predictions
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Random variables

A random variable (informally) is a variable whose value is not initial known

Instead, these variables can take on different values (including a possibly infinite number), 

and must take on exactly one of these values, each with an associated probability, which 

all together sum to one

“Weather” takes on values sunny, rainy, cloudy, snowy
𝑝 Weather = sunny = 0.3
𝑝 Weather = rainy = 0.2
…

Slightly different notation for continuous random variables, which we will discuss shortly
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Notation for random variables

In this lecture, we use upper case letters, 𝑋 to denote random variables

For a random variable 𝑋 taking values 1,2,3

𝑝 𝑋 = ቐ
1: 0.1
2: 0.5
3: 0.4

represents a mapping from values to probabilities numbers that sum to one (odd 
notation, would be better to use 𝑝𝑋, but this is not common)

Conversely, we will use lower case 𝑥 to denote a specific value of 𝑋 (i.e., for above 
example 𝑥 ∈ 1,2,3 ), and 𝑝 𝑋 = 𝑥 or just 𝑝 𝑥 refers to a number (the 
corresponding entry of 𝑝 𝑋 )

8



Examples of probability notation

Given two random variables: 𝑋1 with values in {1,2,3} and 𝑋2 with values in 1,2 :

• 𝑝(𝑋1, 𝑋2) refers to the joint distribution, i.e., a set of 6 possible values for 

each setting of variables, i.e. a dictionary mapping 1,1 , 1,2 , 2,1 ,… to 

corresponding probabilities)

• 𝑝(𝑥1, 𝑥2) is a number: probability that 𝑋1 = 𝑥1 and 𝑋2 = 𝑥2
• 𝑝(𝑋1, 𝑥2) is a set of 3 values, the probabilities for all values of 𝑋1 for the given 

value 𝑋2 = 𝑥2, i.e., it is a dictionary mapping 0,1,2 to numbers (note: not 

probability distribution, it will not sum to one)

We generally call all of these terms factors (dictionaries mapping values to 

numbers, even if they do not sum to one)
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Example: weather and cavity

Let Weather denote a random variable taking on values in {sunny, rainy, cloudy} and 
Cavity a random variables taking on values in {yes, no}

𝑝 Weather, Cavity =

sunny, yes 0.07
sunny, no 0.63
rainy, yes 0.02
rainy, no 0.18
cloudy, yes 0.01
cloudy, no 0.09

𝑝 sunny, yes = 0.07

𝑝 Weather, yes = ቐ

sunny 0.07
rainy 0.02
cloudy 0.01
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Conditional probability

The conditional probability 𝑝 𝑋1 𝑋2 (the conditional probability of 𝑋1 given 𝑋2) 

is defined as

𝑝 𝑋1 𝑋2 =
𝑝 𝑋1, 𝑋2
𝑝 𝑋2

Can also be written 𝑝 𝑋1, 𝑋2 = 𝑝 𝑋1 𝑋2)𝑝 𝑋2

Example:
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𝑊 𝑇 𝑃(𝑊, 𝑇)

𝑠𝑢𝑛 𝑙𝑖𝑔ℎ𝑡 0.40

𝑟𝑎𝑖𝑛 𝑙𝑖𝑔ℎ𝑡 0.12

𝑠𝑛𝑜𝑤 𝑙𝑖𝑔ℎ𝑡 0.01

𝑠𝑢𝑛 ℎ𝑒𝑎𝑣𝑦 0.10

𝑟𝑎𝑖𝑛 ℎ𝑒𝑎𝑣𝑦 0.28

𝑠𝑛𝑜𝑤 ℎ𝑒𝑎𝑣𝑦 0.09

𝑇 𝑃(𝑇)

𝑙𝑖𝑔ℎ𝑡 0.53

𝑙𝑖𝑔ℎ𝑡 0.47



Discrete Probability Distributions
Conditional distribution

Discrete Random Variables

(and their domains)

𝑀 ∈ 𝑚1, 𝑚2

𝑆 ∈ 𝑠1, 𝑠2

𝑅 ∈ 𝑟1, 𝑟2

𝑃 𝑀, 𝑆 𝑟2)

Icons: CC, https://openclipart.org/detail/296791/pizza-slice
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Poll 1

Which of the following probability tables sum to one?

Select all that apply.

i. 𝑃(𝐴 ∣ 𝑏)

ii. 𝑃 𝐴, 𝑏, 𝐶

iii. 𝑃 𝐴, 𝐶 𝑏

iv. 𝑃 𝑎, 𝑐 𝑏

v. 𝑃 𝑎 𝐵, 𝐶

vi. 𝑃(𝑐 ∣ 𝐴)
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Reminder:

• Capital letters: 

random variables 

that represent all 

possible values

• Lower-case letters: 

represents a single 

specific value



Answer Any Query from Joint Distribution
P(Weather)?

P(Weather | winter)?

P(Weather | winter, hot)?

Season Temp Weather P(S, T, W)

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20
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Marginalization

For random variables 𝑋1, 𝑋2 with joint distribution 𝑝 𝑋1, 𝑋2

𝑝 𝑋1 =

𝑥2

𝑝 𝑋1, 𝑥2 =

𝑥2

𝑝 𝑋1 𝑥2 𝑝 𝑥2

Generalizes to joint distributions over multiple random variables

𝑝 𝑋1, … , 𝑋𝑖 = 

𝑥𝑖+1,…,𝑥𝑛

𝑝 𝑋1, … , 𝑋𝑖 , 𝑥𝑖+1, … , 𝑥𝑛

For 𝑝 to be a probability distribution, the marginalization over all variables must be one



𝑥1,…,𝑥𝑛

𝑝 𝑥1, … , 𝑥𝑛 = 1
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Bayes’ rule

A straightforward manipulation of probabilities:

𝑝 𝑋1 𝑋2 =
𝑝 𝑋1, 𝑋2
𝑝 𝑋2

=
𝑝 𝑋2 𝑋1)𝑝(𝑋1)

𝑝 𝑋2
=

𝑝 𝑋2 𝑋1)𝑝(𝑋1)

σ𝑥1 𝑝(𝑋2|𝑥1) 𝑝 𝑥1
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Example: I want to know if I have come with with a rate strain of flu (occurring in 

only 1/10,000 people).  There is an “accurate” test for the flu (if I have the flu, it will 

tell me I have 99% of the time, and if I do not have it, it will tell me I do not have it 

99% of the time).  I go to the doctor and test positive.  What is the probability I have 

the flu?



Bayes’ rule
Example: I want to know if I have come with with a 

rate strain of flu (occurring in only 1/10,000 people).  

There is an “accurate” test for the flu (if I have the flu, it 

will tell me I have 99% of the time, and if I do not have 

it, it will tell me I do not have it 99% of the time).  I go to 

the doctor and test positive.  What is the probability I 

have the flu?

21

Bayes’ rule

𝑝 𝑋1 𝑋2 =
𝑝 𝑋1,𝑋2

𝑝 𝑋2

=
𝑝 𝑋2 𝑋1)𝑝(𝑋1)

𝑝 𝑋2

=
𝑝 𝑋2 𝑋1)𝑝(𝑋1)

σ𝑥1 𝑝(𝑋2|𝑥1)𝑝 𝑥1



Bayes’ rule
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Independence

We say that random variables 𝑋1 and 𝑋2 are (marginally) independent if their 

joint distribution is the product of their marginals

𝑝 𝑋1, 𝑋2 = 𝑝 𝑋1 𝑝 𝑋2
𝑝 𝑋1 𝑋2) = 𝑝 𝑋1
𝑝 𝑋2 𝑋1) = 𝑝 𝑋2
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Independence

We say that random variables 𝑋1 and 𝑋2 are (marginally) independent if their 

joint distribution is the product of their marginals

𝑝 𝑋1, 𝑋2 = 𝑝 𝑋1 𝑝 𝑋2
𝑝 𝑋1 𝑋2) = 𝑝 𝑋1
𝑝 𝑋2 𝑋1) = 𝑝 𝑋2

Showing equivalence:

𝑝 𝑋1 𝑋2) =
𝑝 𝑋1, 𝑋2
𝑝 𝑋2

=
𝑝 𝑋1 𝑝 𝑋2

𝑝 𝑋2
= 𝑝 𝑋1

and similarly 𝑝 𝑋2 𝑋1 = 𝑝 𝑋2
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Conditional independence

We say that random variables 𝑋1 and 𝑋2 are conditionally independent given 

𝑋3, if

𝑝 𝑋1, 𝑋2|𝑋3 = 𝑝 𝑋1 𝑋3 𝑝 𝑋2 𝑋3)
𝑝 𝑋1 𝑋2, X3 = 𝑝 𝑋1 𝑋3
𝑝 𝑋2 𝑋1, X3 = 𝑝(𝑋2|𝑋3)

25



Conditional independence

We say that random variables 𝑋1 and 𝑋2 are conditionally independent given 

𝑋3, if

𝑝 𝑋1, 𝑋2|𝑋3 = 𝑝 𝑋1 𝑋3 𝑝 𝑋2 𝑋3)
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𝑝 𝑋1 𝑋2, X3 =
𝑝 𝑋1, 𝑋2 𝑋3
𝑝 𝑋2 𝑋3

=
𝑝 𝑋1 𝑋3 𝑝 𝑋2 𝑋3)

𝑝 𝑋2 𝑋3
= 𝑝(𝑋1|𝑋3)

And similarly 𝑝 𝑋2 𝑋1, 𝑋3 = 𝑝 𝑋2 𝑋3
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Marginal and conditional independence

Important: Marginal independence does not imply conditional independence or 

vice versa

27

𝑃 Earthquake Burglary = 𝑃(Earthquake) but

𝑃 Earthquake Burglary, Alarm ≠ 𝑃 Earthquake Alarm

𝑃 JohnCalls MaryCalls, Alarm = 𝑃 JohnCalls Alarm but

𝑃 JohnCalls MaryCalls ≠ 𝑃(JohnCalls)



Marginal and conditional independence

Important: Marginal independence does not imply conditional independence or 

vice versa
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Operations on probabilities/factors

𝑝 𝑋3 ∣ 𝑋2 𝑝 𝑋2 ∣ 𝑋1
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Operations on probabilities/factors

We can perform operations on probabilities/factors by performing the operation on 

every corresponding value in the probabilities/factors

For example, given three random variables 𝑋1, 𝑋2, 𝑋3:

𝑝 𝑋3 ∣ 𝑋2 op 𝑝 𝑋2 ∣ 𝑋1

denotes a factor over 𝑋1, 𝑋2, 𝑋3 (i.e., a dictionary over all possible combinations of 

values these three random variables can take), where the value for 𝑥1, 𝑥2, 𝑥3 is 

given by

𝑝 𝑥3 ∣ 𝑥2 op 𝑝 𝑥2 ∣ 𝑥1
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Expectation

The expectation of a random variable is denoted:

𝐄 𝑋 =

𝑥

𝑥 ⋅ 𝑝 𝑥

where we use upper case 𝑋 to emphasize that this is a function of the entire 
random variable (but unlike 𝑝(𝑋) is a number)

Note that this only makes sense when the values that the random variable takes on 
are numerical (i.e., We can’t ask for the expectation of the random variable 
“Weather”)

Also generalizes to conditional expectation:

𝐄 𝑋1|𝑥2 =

𝑥1

𝑥1 ⋅ 𝑝 𝑥1|𝑥2
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Rules of expectation

Expectation of sum is always equal to sum of expectations (even when variables 

are not independent):

𝐄 𝑋1 + 𝑋2 = 

𝑥1,𝑥2

𝑥1 + 𝑥2 𝑝(𝑥1, 𝑥2)

=

𝑥1

𝑥1

𝑥2

𝑝 𝑥1, 𝑥2 +

𝑥2

𝑥2

𝑥1

𝑝 𝑥1, 𝑥2

=

𝑥1

𝑥1𝑝 𝑥1 +

𝑥2

𝑥2𝑝 𝑥2

= 𝐄 𝑋1 + 𝐄 𝑋2
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Rules of expectation

If 𝑥1, 𝑥2 independent, expectation of products is product of expectations

𝐄 𝑋1𝑋2 = 

𝑥1,𝑥2

𝑥1𝑥2 𝑝 𝑥1, 𝑥2

= 

𝑥1,𝑥2

𝑥1𝑥2 𝑝 𝑥1 𝑝 𝑥2

=

𝑥1

𝑥1𝑝 𝑥1 

𝑥2

𝑥2𝑝 𝑥2

= 𝐄 𝑋1 𝐄 𝑋2
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Variance

Variance of a random variable is the expectation of the variable minus its 

expectation, squared

𝐕𝐚𝐫 𝑋 = 𝐄 𝑋 − 𝐄 𝑋 2 =

𝑥

𝑥 − 𝐄 𝑥 2𝑝 𝑥

= 𝐄 𝑋2 − 2𝑋𝐄 𝑋 + 𝐄 𝑋 2

= 𝐄 𝑋2 − 𝐄 𝑋 2

Generalizes to covariance between two random variables

𝐂𝐨𝐯 𝑋1, 𝑋2 = 𝐄 𝑋1 − 𝐄 𝑋1 𝑋2 − 𝐄 𝑋2
= 𝐄 𝑋1𝑋2 − 𝐄 𝑋1 𝐄[𝑋2]
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Infinite random variables

All the math above works the same for discrete random variables that can take on 
an infinite number of values (for those with some math background, I’m talking 
about countably infinite values here) 

The only difference is that 𝑝(𝑋) (obviously) cannot be specified by an explicit 
dictionary mapping variable values to probabilities, need to specify a function that 
produces probabilities

To be a probability, we still must have σ𝑥 𝑝 𝑥 = 1

Example:

𝑃 𝑋 = 𝑘 =
1

2

𝑘

, 𝑘 = 1,… ,∞
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Continuous random variables

For random variables taking on continuous values (we’ll only consider real-valued 

distributions), we need some slightly different mechanisms

As with infinite discrete variables, the distribution 𝑝(𝑋) needs to be specified as a 

function: here is referred to as a probability density function (PDF) and it must 

integrate to one ℝ𝑝 𝑥 𝑑𝑥 = 1

For any interval 𝑎, 𝑏 , we have that 𝑝 𝑎 ≤ 𝑥 ≤ 𝑏 = 𝑎
𝑏
𝑝 𝑥 𝑑𝑥 (with similar 

generalization to multi-dimensional random variables)

Can also be specified by their cumulative distribution function (CDF), 𝐹 𝑎 =

𝑝 𝑥 ≤ 𝑎 = ∞
𝑎
𝑝(𝑥)
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Bernoulli distribution

A simple distribution over binary {0,1} random variables

𝑝 𝑋 = 1;𝜙 = 𝜙, 𝑃 𝑋 = 0;𝜙 = 1 − 𝜙

where 𝜙 ∈ [0,1] is the parameter that governs the distribution 

Expectation is just 𝐄 𝑋 = 𝜙 (but not very common to refer to it this way, since this 

would imply that the {0,1} terms are actual real-valued numbers)
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Categorical distribution

This is the discrete distribution we’ve mainly considered so far, a distribute over 
finite discrete elements with each probability specified

Written generically as:

𝑝 𝑋 = 𝑖; 𝜙 = 𝜙𝑖

where 𝜙1, …𝜙𝑘 ∈ [0,1] are the parameters of the distribution (the probability of 
each random variable, must sum to one)

Note: we could actually parameterize just using 𝜙1, …𝜙𝑘−1, since this would 
determine the last elements

Unless the actual numerical value of the 𝑖’s are relevant, it doesn’t make sense to 
take expectations of a categorical random variable
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Gaussian distribution

Distribution over real-valued numbers, empirically the most common distribution in 
all of data science (not in data itself, necessarily, but for people applying data 
science), the standard “bell curve”:

Probability density function:

𝑝 𝑥; 𝜇, 𝜎2 =
1

2𝜋𝜎2 1/2
exp −

𝑥 − 𝜇 2

2𝜎2
≡ 𝒩 𝑥; 𝜇, 𝜎2

with parameters 𝜇 ∈ ℝ (mean) and 𝜎2 ∈ ℝ+ (variance)

42

𝜇 = 0
𝜎2 = 1



Multivariate Gaussians

The Gaussian distribution is one of the few distributions that generalizes nicely to 

higher dimensions

We’ll discuss this in much more detail when we talk about anomaly detection and 

the mixture of Gaussians model, but for now, just know that we can also write a 

distribution over random vectors 𝑥 ∈ ℝ𝑛

𝑝 𝑥; 𝜇, Σ =
1

2𝜋Σ 1/2
exp − 𝑥 − 𝜇 𝑇Σ−1 𝑥 − 𝜇

where 𝜇 ∈ ℝ𝑛 is mean and Σ ∈ ℝ𝑛×𝑛 is covariance matrix, and ⋅ denotes the 

determinant of a matrix
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Laplace distribution

Like a Gaussian but with absolute instead of squared difference, gives the 
distribution (relatively) “heavy tails”

Probability density function:

𝑝 𝑥; 𝜇, 𝑏 =
1

2𝑏
exp −

𝑥 − 𝜇

𝑏

with parameters 𝜇 (mean), 𝑏 (variance is 2𝑏2) 
45

𝜇 = 0
𝑏 = 1



Some additional examples

Student’s t distribution – distribution governing estimation of normal distribution 

from finite samples, commonly used in hypothesis testing

𝜒2 (chi-squared) distribution – distribution of Gaussian variable squared, also used 

in hypothesis testing

Cauchy distribution – very heavy tailed distribution, to the point that variables have 

undefined expectation (the associated integral is undefined)
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