
15-388/688 - Practical Data

Science:

Nonlinear modeling, cross-

validation, and regularization

Pat Virtue

Carnegie Mellon University

Spring 2022

1Slide credits: CMU AI, Zico Kolter

Outline

Example: return to peak demand prediction

Overfitting, generalization, and cross validation

Regularization

General nonlinear features

Kernels

Nonlinear classification

2

Outline

Example: return to peak demand prediction

Overfitting, generalization, and cross validation

Regularization

General nonlinear features

Kernels

Nonlinear classification

3

Peak demand vs. temperature (summer

months)

4

Peak demand vs. temperature (all months)

5

Peak demand vs. temperature (all months)

6

Linear regression fit

7

“Non-linear” regression

Thus far, we have illustrated linear regression as “drawing a line through through the data”,
but this was really a function of our input features

Though it may seem limited, linear regression algorithms are quite powerful when applied
to non-linear features of the input data, e.g.

𝑥 𝑖 =
High_Temperature 𝑖 2

High_Temperature 𝑖

1

Same hypothesis class as before ℎ𝜃 𝑥 = 𝜃𝑇𝑥, but now prediction will be a non-linear
function of base input (e.g. a quadratic function)

Same least-squares solution 𝜃 = 𝑋𝑇𝑋 −1𝑋𝑇𝑦

8

Polynomial features of degree 2

9

Code for fitting polynomial

The only element we need to add to write this non-linear regression is the creation

of the non-linear features

Output learned function:

10

x = df_daily.loc[:,"Temperature"]

min_x, rng_x = (np.min(x), np.max(x) - np.min(x))

x = 2*(x - min_x)/rng_x - 1.0

y = df_daily.loc[:,"Load"]

X = np.vstack([x**i for i in range(poly_degree,-1,-1)]).T

theta = np.linalg.solve(X.T.dot(X), X.T.dot(y))

x0 = 2*(np.linspace(xlim[0], xlim[1],1000) - min_x)/rng_x - 1.0

X0 = np.vstack([x0**i for i in range(poly_degree,-1,-1)]).T

y0 = X0.dot(theta)

Polynomial features of degree 3

11

Polynomial features of degree 4

12

Polynomial features of degree 10

13

Polynomial features of degree 50

14

Linear regression with many features

Suppose we have 𝑚 examples in our data set and 𝑛 = 𝑚 features (plus

assumption that features are linearly independent, though we’ll always assume this)

Then 𝑋 ∈ ℝ𝑚×𝑛 is a square matrix, and least squares solution is:

𝜃 = 𝑋𝑇𝑋 −1𝑋𝑇𝑌 = 𝑋−1𝑋−𝑇𝑋𝑇𝑦 = 𝑋−1𝑦

and we therefore have 𝑋𝜃 = 𝑦 (i.e., we fit data exactly)

Note that we can only perform the above operations when 𝑋 is square, though if we

have more features than examples, we can still get an exact fit by simply discarding

features

15

Outline

Example: return to peak demand prediction

Overfitting, generalization, and cross validation

Regularization

General nonlinear features

Kernels

Nonlinear classification

16

Generalization error

The problem with the canonical machine learning problem is that we don’t really

care about minimizing this objective on the given data set

minimize
𝜃

𝑖=1

𝑚

ℓ ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖

What we really care about is how well our function will generalize to new examples

that we didn’t use to train the system (but which are drawn from the “same

distribution” as the examples we used for training)

The higher degree polynomials exhibited overfitting: they actually have very low

loss on the training data, but create functions we don’t expect to generalize well

17

Cartoon version of overfitting

18

As model becomes more complex, training loss always decreases; generalization

loss decreases to a point, then starts to increase

Cross-validation

Although it is difficult to quantify the true generalization error (i.e., the error of these
algorithms over the complete distribution of possible examples), we can
approximate it by holdout cross-validation

Basic idea is to split the data set into a training set and a holdout set

Train the algorithm on the training set and evaluate on the holdout set

19

Holdout / validation

set (e.g. 30%)
Training set (e.g. 70%)

All data

Cross-validation in code

A simple example of holdout cross-validation:

20

compute a random split of the data

np.random.seed(0)

perm = np.random.permutation(len(df_daily))

idx_train = perm[:int(len(perm)*0.7)]

idx_cv = perm[int(len(perm)*0.7):]

scale features for each split based upon training

xt = df_daily.iloc[idx_train,0]

min_xt, rng_xt = (np.min(xt), np.max(xt) - np.min(xt))

xt = 2*(xt - min_xt)/rng_xt - 1.0

xcv = 2*(df_daily.iloc[idx_cv,0] - min_xt)/rng_xt -1

yt = df_daily.iloc[idx_train,1]

ycv = df_daily.iloc[idx_cv,1]

compute least squares solution and error on holdout and training

X = np.vstack([xt**i for i in range(poly_degree,-1,-1)]).T

theta = np.linalg.solve(X.T.dot(X), X.T.dot(yt))

err_train = 0.5*np.linalg.norm(X.dot(theta) - yt)**2/len(idx_train)

err_cv = 0.5*np.linalg.norm(Xcv.dot(theta) - ycv)**2/len(idx_cv)

Parameters and hyperparameters

We refer to the 𝜃 variables as the parameters of the machine learning algorithm

But there are other quantities that also affect the classifier: degree of polynomial,

amount of regularization, etc; these are collectively referred to as the

hyperparameters of the algorithm

Basic idea of cross-validation: use training set to determine the parameters, use

holdout set to determine the hyperparameters

21

Illustrating cross-validation

22

Training and cross-validation loss by degree

23

Training and cross-validation loss by degree

24

K-fold cross-validation

A more involved (but actually slightly more common) version of cross validation

Split data set into 𝑘 disjoint subsets (folds); train on 𝑘 − 1 and evaluate on

remaining fold; repeat 𝑘 times, holding out each fold once

Report average error over all held out folds

25

Fold 1

All data

Fold 2 Fold 𝑘…

K-fold cross-validation

26

K=4-fold example:

Fold 1 Fold 2 Fold 3 Fold 4

Train Train Train Val

Train Train Val Train

Train Val Train Train

Val Train Train Train

Variants

Leave-one-out cross-validation: the limit of k-fold cross-validation, where each

fold is only a single example (so we are training on all other examples, testing on

that one example)

[Somewhat surprisingly, for least squares this can be computed more efficiently than k-fold

cross validation, same complexity solving for the optimal 𝜃 using matrix equation]

Stratified cross-validation: keep an approximately equal percentage of

positive/negative examples (or any other feature), in each fold

Warning: k-fold cross validation is not always better (e.g., in time series prediction,

you would want to have holdout set all occur after training set)

27

Poll 1

Say you are choosing amongst 10 different values of a polynomial degree, and

you want to do K=5-fold cross-validation.

How many times do I have to train my model?

A. 5

B. 10

C. 15

D. 50

E. 510

F. 105

Outline

Example: return to peak demand prediction

Overfitting, generalization, and cross validation

Regularization

General nonlinear features

Kernels

Nonlinear classification

29

Polynomial features of degree 50

30

𝜃 = [−3.88 × 106, 7.60 × 106, 3.94 × 106, −2.60 × 107, …]

Regularization

We have seen that the degree of the polynomial acts as a natural measure of the

“complexity” of the model, higher degree polynomials are more complex (taken to

the limit, we fit any finite data set exactly)

But fitting these models also requires extremely large coefficients on these

polynomials

For 50-degree polynomial, the first few coefficients are

𝜃 = −3.88 × 106, 7.60 × 106, 3.94 × 106, −2.60 × 107, …

This suggests an alternative way to control model complexity: keep the weights

small (regularization)

31

Regularized least squares

For least squares, there is a simple solution to the regularized loss minimization problem

minimize
𝜃

𝑖=1

𝑚

𝜃𝑇𝑥 𝑖 − 𝑦 𝑖 2
+ 𝜆 𝜃 2

2

What happen as 𝜆 goes to zero?

What happen as 𝜆 gets really big?

32

Regularized loss minimization

This leads us back to the regularized loss minimization problem we saw before, but

with a bit more context now:

minimize
𝜃

𝑖=1

𝑚

ℓ ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖 +
𝜆

2
𝜃 2

2

This formulation trades off loss on the training set with a penalty on high values of

the parameters

By varying 𝜆 from zero (no regularization) to infinity (infinite regularization, meaning

parameters will all be zero), we can sweep out different sets of model complexity

33

50 degree polynomial fit

34

50 degree polynomial fit with 𝜆 = 1

35

Training/cross-validation loss by regularization

36

Training/cross-validation loss by regularization

37

Regularized least squares

For least squares, there is a simple solution to the regularized loss minimization problem

minimize
𝜃

𝑖=1

𝑚

𝜃𝑇𝑥 𝑖 − 𝑦 𝑖 2
+ 𝜆 𝜃 2

2

Taking gradients by the same rules as before gives:

𝛻𝜃

𝑖=1

𝑚

𝜃𝑇𝑥 𝑖 − 𝑦 𝑖 2
+ 𝜆 𝜃 2

2 = 2𝑋𝑇 𝑋𝜃 − 𝑦 + 2𝜆𝜃

Setting gradient equal to zero leads to the solution
2𝑋𝑇𝑋𝜃 + 2𝜆𝜃 = 2𝑋𝑇𝑦 ⟹ 𝜃 = 𝑋𝑇𝑋 + 𝜆𝐼 −1𝑋𝑇𝑦

Looks just like the normal equations but with an additional 𝜆𝐼 term

38

Outline

Example: return to peak demand prediction

Overfitting, generalization, and cross validation

Regularization

General nonlinear features

Kernels

Nonlinear classification

39

More general features

We previously described polynomial features for a single raw input, but if our raw
input is itself multi-variate, how do we define polynomial features?

40

𝑥1 𝑥2

𝑥(1) 3 2

𝑥(2) 4 3

𝑥(3) 1 1

⋮

𝑋

More general features

We previously described polynomial features for a single raw input, but if our raw
input is itself multi-variate, how do we define polynomial features?

41

𝑥1 𝑥2

𝑥(1) 3 2

𝑥(2) 4 3

𝑥(3) 1 1

⋮

𝑋

𝑥1
𝑥2

𝜙1 𝜙2 𝜙3 𝜙4 𝜙5 𝜙6

𝜙(1) 9 3 4 2 6 1

𝜙(2) 16 4 9 3 12 1

𝜙(3) 1 1 1 1 1 1

⋮

Φ

𝜙 𝑥
→

𝑥1
2

𝑥1
𝑥2
2

𝑥2
𝑥1𝑥2
1

𝜙 𝑥
→

Notation for more general features

We previously described polynomial features for a single raw input, but if our raw
input is itself multi-variate, how do we define polynomial features?

Deviating a bit from past notion, for precision here we’re going to use 𝑥 𝑖 ∈ ℝ𝑘 to
denote the raw inputs, and 𝜙 𝑖 ∈ ℝ𝑛 to denote the input features we construct
(also common to use the notation 𝜙 𝑥 𝑖)

We’ll also drop (𝑖) superscripts, but important to understand we’re transforming
each feature this way

E.g., for the high temperature:

𝑥 = High_Temperature , 𝜙 =
𝑥2

𝑥
1

42

Polynomial features in general

One possibility for higher degree polynomials is to just use an independent

polynomial over each dimension (here of degree 𝑑)

𝑥 ∈ ℝ𝑘 ⟹𝜙 =

𝑥1
𝑑

⋮
𝑥1
⋮
𝑥𝑘
𝑑

⋮
𝑥𝑘
1

∈ ℝ𝑘𝑑+1

But this ignores cross terms between different features, i.e., terms like 𝑥1𝑥2
2𝑥𝑘

43

Polynomial features in general

A better generalization of polynomials is to include all polynomial terms between

raw inputs up to degree 𝑑

𝑥 ∈ ℝ𝑘 ⟹𝜙 = ෑ

𝑖=1

𝑘

𝑥𝑖
𝑏𝑖 ∶

𝑖=1

𝑘

𝑏𝑖 ≤ 𝑑 ∈ ℝ
𝑘+𝑑
𝑘

Code to generate all polynomial features with degree exactly 𝑑:

Code to generate all polynomial features with degree up to 𝑑

44

from itertools import combinations_with_replacement

[np.prod(a) for a in combinations_with_replacement(x, d)]

[np.prod(a) for i in range(d+1) for a in combinations_with_replacement(x,i)]

Code for general polynomials

The following code efficiently (relatively) generates all polynomials up to degree 𝑑
for an entire data matrix 𝑋

It is using the same logic as above, but applying it to entire columns of the data at a

time, and thus only needs one call to combinations_with_replacement

45

def poly(X,d):

return np.array([reduce(operator.mul, a, np.ones(X.shape[0]))

for i in range(1,d+1)

for a in combinations_with_replacement(X.T, i)]).T

Radial basis functions (RBFs)

Consider the following function that is related to the distance between our input 𝑥
and some point 𝜇.

𝑒
−

𝑥 −𝜇 2
2

2𝜎2

What does it look like if we plot this function versus 𝑥 for 𝜇 = 10?

𝑒
−

𝑥 −10 2
2

2𝜎2

46

Radial basis functions (RBFs)

𝑒
−

𝑥 −𝜇 2
2

2𝜎2

47

def rbf(x, mu, sigma):

return np.exp(-(x-mu).T@(x-mu)/(2*sigma**2))

𝜇 = 10 𝜎 = 1

𝑥

𝜇 = 3, 5 𝑇 𝜎 = 1

𝑥1

𝑥2

Linear combination of RBFs

𝜙𝑘 𝑥 = 𝑒
−

𝑥 −𝜇(𝑘)
2

2

2𝜎2 ℎ𝜃 𝑥 =

𝑘

𝐾

𝜃𝑘𝜙𝑘(𝑥)

48

Linear combination of RBFs

ℎ𝜃 𝑥 =

𝑘

𝐾

𝜃𝑘𝜙𝑘(𝑥)

49

𝜎 = 1

𝜇 𝑘 ∈ −15,−7.5, 0, 7.5, 15
𝜃 = [1, 1, 1, 1, 1]

𝑥

𝜎 = 1

𝜇 𝑘 ∈ −15,−7.5, 0, 7.5, 15
𝜃 = [−0.5, −0.2, 0.8, 1.2, 0.8]

𝜙𝑘 𝑥 = 𝑒
−

𝑥 −𝜇(𝑘)
2

2

2𝜎2

𝑥

Radial basis functions (RBFs)

For 𝑥 ∈ ℝ𝑘, select some set of 𝑝 centers, 𝜇 1 , … , 𝜇 𝑝 (we’ll discuss shortly how to
select these), and create features

𝜙 = exp −
𝑥 − 𝜇 𝑖

2

2

2𝜎2
: 𝑖 = 1,… , 𝑝 ራ 1 ∈ ℝ𝑝+1

Very important: need to normalize columns of 𝑋 (i.e., different features), to all be
the same range, or distances won’t be meaningful

(Hyper)parameters of the features include the choice of the 𝑝 centers, and the
choice of the bandwidth 𝜎

Choose centers, i.e., to be a uniform grid over input space, can choose 𝜎 e.g.
using cross validation (don’t do this, though, more on this shortly)

50

Example radial basis function

Example:

𝑥 = High_Temperature ,

𝜇 1 = 20 , 𝜇 2 = 25 , 𝜇 3 = 30 , 𝜇 4 = 35 ,… , 𝜇 16 = 95 , 𝜎 = 10

Leads to features:

𝜙 =

exp(− High_Temperature − 20 2/200)
⋮

exp(− High_Temperature − 95 2/200)
1

51

Example radial basis function

Example:

𝑥 = High_Temperature ,

𝜇 1 = 20 , 𝜇 2 = 25 , 𝜇 3 = 30 , 𝜇 4 = 35 ,… , 𝜇 16 = 95 , 𝜎 = 10

52

𝑥1

𝑥(1) 25

𝑥(2) 33

𝑥(3) 43

⋮

𝑋

𝜙1 𝜙2 𝜙3 𝜙4 … 𝜙17

𝜙(1) 0.88 1.0 0.88 0.61 … 1

𝜙(2) 0.43 0.73 0.96 0.98 … 1

𝜙(3) 0.07 0.2 0.43 0.73 … 1

⋮

Φ

𝜙 𝑥
→

Code for generating RBFs

The following code generates a complete set of RBF features for an entire data

matrix 𝑋 ∈ ℝ𝑚×𝑘 and matrix of centers 𝜇 ∈ ℝ𝑝×𝑘

Important “trick” is to efficiently compute distances between all data points and all

centers

53

def rbf(X,mu,sig):

sqdist = -2*X@mu.T + (X**2).sum(axis=1)[:,None] + (mu**2).sum(axis=1)

return np.exp(-sqdist/(2*sig**2))

Difficulties with general features

The challenge with these general non-linear features is that the number of potential

features grows very quickly in the dimensionality of the raw input

Polynomials: 𝑘-dimensional raw input ⟹
𝑘 + 𝑑
𝑘

= 𝑂 𝑑𝑘 total features (for

fixed 𝑑)

RBFs: 𝑘-dimensional raw input, uniform grid with 𝑑 centers over each dimension

⟹𝑑𝑘 total features

These quickly become impractical for large feature raw input spaces

54

Practical polynomials

Don’t use the full set of all polynomials, for anything but very low dimensional input

data (say 𝑘 ≤ 4)

Instead, form polynomials only of features where you know that the relationship

may be important:

• E.g. Temperature2 ⋅ Weekday, but not Temperature ⋅ Humidity

For binary raw inputs, no point in taking every power (𝑥𝑖
2 = 𝑥𝑖)

These elements do all require some insight into the problem

55

Practical RBFs

Don’t create RBF centers in a grid over your raw input space (your data will never

cover an entire high-dimensional space, but will lie on a subset)

Instead, pick centers by randomly choosing 𝑝 data points in the training set (a bit

fancier, run k-means to find centers, which we’ll describe later)

Don’t pick 𝜎 using cross validation

Instead, choose the following (called the median trick)

𝜎 = median 𝜇 𝑖 − 𝜇 𝑗
2
, 𝑖, 𝑗 = 1,… , 𝑝

56

Regression using training data as RBF centers

57

Small 𝜎 Medium 𝜎 Large 𝜎

Regression using training data as RBF centers

58

Small 𝜎 Medium 𝜎 Large 𝜎

Outline

Example: return to peak demand prediction

Overfitting, generalization, and cross validation

Regularization

General nonlinear features

Kernels

Nonlinear classification

59

Kernels

60

Kernels

One of the most prominent advances in machine learning in the past 20 years
(recently fallen out of favor relative to neural networks, but still can be the best-
performing approach for many “medium-sized” problems)

Kernels fundamentally are about specific hypothesis function

ℎ𝜃 𝑥 =

𝑖=1

𝑚

𝜃𝑖𝐾 𝑥, 𝑥 𝑖

where 𝐾 ∶ ℝ𝑛 × ℝ𝑛 → ℝ is a kernel function

Kernels can implicitly represent high dimensional feature vectors without the need
to form them explicitly (we won’t prove this here, but provide a short description in
the notes)

61

Kernels as high dimensional features

1. Polynomial Kernel

𝐾 𝑥, 𝑧 = 1 + 𝑥𝑇𝑧 𝑑

is equivalent to using full degree 𝑑 polynomial (
𝑛 + 𝑑
𝑑

-dimension) features in the

raw inputs

2. RBF Kernel

𝐾 𝑥, 𝑧 = exp −
𝑥 − 𝑧 2

2

2𝜎2

is equivalent to a polynomial feature function with all degrees up to infinity!

62

Kernels: what is the “catch”

What is the downside of using kernels?

Recall hypothesis function

ℎ𝜃 𝑥 =

𝑖=1

𝑚

𝜃𝑖𝐾 𝑥, 𝑥 𝑖

Note that we need a parameter for every training example (complexity increases
with the size of the training set)

Called a non-parametric method (number of parameters increase with the number
of data points)

Typically, complexity of resulting ML algorithm is 𝑂(𝑚2) (or larger), leads to
impractical algorithms on large data sets 63

Outline

Example: return to peak demand prediction

Overfitting, generalization, and cross validation

Regularization

General nonlinear features

Kernels

Nonlinear classification

64

Nonlinear classification

Just like linear regression, the nice thing about using nonlinear features for

classification is that our algorithms remain exactly the same as before

I.e., for an SVM, we just solve (using gradient descent)

minimize
𝜃

𝑖=1

𝑚

max{1 − 𝑦 𝑖 ⋅ 𝜃𝑇𝑥 𝑖 , 0} +
𝜆

2
𝜃 2

2

Only difference is that 𝑥 𝑖 now contains non-linear functions of the input data

65

Linear SVM on cancer data set

66

Polynomial features 𝑑 = 2

67

Polynomial features 𝑑 = 3

68

Polynomial features 𝑑 = 10

69

SVM with RBF kernel 𝜎 high

70

SVM with RBF kernel 𝜎 medium

71

SVM with RBF kernel 𝜎 low

72

