
Announcements

HW2

• Due Mon 2/28

1

Plan

Complete Data collection and management

▪ Wrap up Free text and NLP

Begin Statistical modeling and machine learning

▪ Intro to ML and

▪ Linear regression

2

15-388/688 - Practical Data Science:

Intro to Machine Learning &

Linear Regression
Pat Virtue

Carnegie Mellon University

Spring 2022

3Slide credits: CMU AI, Zico Kolter

Outline

Least squares regression: a simple example

Machine learning notation

Linear regression revisited

Matrix/vector notation and analytic solutions

Implementing linear regression

4

Outline

Least squares regression: a simple example

Machine learning notation

Linear regression revisited

Matrix/vector notation and analytic solutions

Implementing linear regression

5

A simple example: predicting electricity use

What will peak power consumption be in Pittsburgh tomorrow?

Difficult to build an “a priori” model from first principles to answer this question

But, relatively easy to record past days of consumption, plus additional features

that affect consumption (i.e., weather)

6

Date High Temperature (F) Peak Demand (GW)

2011-06-01 84.0 2.651

2011-06-02 73.0 2.081

2011-06-03 75.2 1.844

2011-06-04 84.9 1.959

… … …

Plot of consumption vs. temperature

Plot of high temperature vs. peak demand for summer months (June – August) for

past six years

7

Hypothesis: linear model

Let’s suppose that the peak demand approximately fits a linear model

8

Hypothesis: linear model

Let’s suppose that the peak demand approximately fits a linear model

Peak_Demand ≈ 𝜃1 ⋅ High_Temperature + 𝜃2

Here 𝜃1 is the “slope” of the line, and 𝜃2 = is the intercept

9

Making predictions

Importantly, our model also lets us make predictions about new days

What will the peak demand be tomorrow?

If we know the high temperature will be 72 degrees (ignoring for now that this is

also a prediction), then we can predict peak demand to be:

Predicted_Peak_Demand = 𝜃1 ⋅ 72 + 𝜃2 = 1.821 GW

Equivalent to just “finding the point on the line”

10

Predicted output for each data point

Peak_Demand(𝑖)

Predicted_Peak_Demand 𝑖 = 𝜃1 ⋅ High_Temperature
𝑖 + 𝜃2

11

Hypothesis: linear model

Peak_Demand(𝑖)

Predicted_Peak_Demand 𝑖 = 𝜃1 ⋅ High_Temperature
𝑖 + 𝜃2

12

Hypothesis: linear model

Let’s suppose that the peak demand approximately fits a linear model

Predicted_Peak_Demand = 𝜃1 ⋅ High_Temperature + 𝜃2

Here 𝜃1 is the “slope” of the line, and 𝜃2 is the intercept

How do we find a “good” fit to the data?

Many possibilities, but natural objective is to minimize some difference between this line
and the observed data, e.g. squared loss

𝐸 𝜃 = ෍

𝑖∈days

Predicted_Peak_Demand 𝑖 − Peak_Demand 𝑖 2

𝐸 𝜃 = ෍

𝑖∈days

𝜃1 ⋅ High_Temperature
𝑖 + 𝜃2 − Peak_Demand 𝑖 2

13

How do we find parameters?

How do we find the parameters 𝜃1, 𝜃2 that minimize the function

𝐸 𝜃 = E 𝜃1, 𝜃2 = ෍

𝑖∈days

𝜃1 ⋅ High_Temperature
𝑖 + 𝜃2 − Peak_Demand 𝑖 2

≡ σ𝑖∈days 𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 2

14

𝜃1

𝜃2

Peak_Demand

𝑦

𝑥
High_Temperature

How do we find parameters?

How do we find the parameters 𝜃1, 𝜃2 that minimize the function

𝐸 𝜃 = E 𝜃1, 𝜃2 = ෍

𝑖∈days

𝜃1 ⋅ High_Temperature
𝑖 + 𝜃2 − Peak_Demand 𝑖 2

≡ σ𝑖∈days 𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 2

15

𝜃1

𝜃2

Peak_Demand

𝑦

𝑥
High_Temperature

𝑚
𝑏

How do we find parameters?

How do we find the parameters 𝜃1, 𝜃2 that minimize the function

𝐸 𝜃 = E 𝜃1, 𝜃2 = ෍

𝑖∈days

𝜃1 ⋅ High_Temperature
𝑖 + 𝜃2 − Peak_Demand 𝑖 2

≡ σ𝑖∈days 𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 2

16

𝑥
High_Temperature

𝜃1
𝜃2

𝐸(𝜃)

Peak_Demand

𝑦

𝜃1

𝜃2

𝜃1
𝜃2

Gradient descent

How do we find the parameters 𝜃1, 𝜃2 that minimize:

𝐸 𝜃 = E(𝜃1, 𝜃2) = ෍

𝑖∈days

𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 2

𝐸(𝜃)

𝜃1

𝜃2

𝜃1
𝜃2

Gradient descent

How do we find the parameters 𝜃1, 𝜃2 that minimize:

𝐸 𝜃 = E(𝜃1, 𝜃2) = ෍

𝑖∈days

𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 2

𝐸(𝜃)

Gradient descent

To find a good value of 𝜃, we can repeatedly take steps in the direction of the
negative derivatives for each value

Repeat:

𝜃1 ≔ 𝜃1 − 𝛼
𝜕

𝜕𝜃1
𝐸(𝜃1, 𝜃2)

𝜃2 ≔ 𝜃2 − 𝛼
𝜕

𝜕𝜃1
𝐸(𝜃1, 𝜃2)

where 𝛼 is some small positive number called the step size

This is the gradient decent algorithm, the workhorse of modern machine learning

19

Computing gradients (partial derivatives)

How do we find the parameters 𝜃1, 𝜃2 that minimize the function

𝐸 𝜃 = E 𝜃1, 𝜃2 = ෍

𝑖∈days

𝜃1 ⋅ High_Temperature
𝑖 + 𝜃2 − Peak_Demand 𝑖 2

≡ σ𝑖∈days 𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 2

General idea: suppose we want to minimize some function 𝑓 𝜃

Derivative is slope of the function, so negative derivative points “downhill” 20

Calculus worksheet

A. 𝑓 𝑥 = 𝑥2 + 5𝑥3
𝑑𝑓

𝑑𝑥
=

B. 𝑓 𝑥 = (3 − 5𝑥)2
𝑑𝑓

𝑑𝑥
=

C. 𝑓 𝑥, 𝑧 = 2𝑥 + 3𝑧 + 5𝑥2𝑧
𝜕𝑓

𝜕𝑧
=

D. 𝑓 𝑥, 𝑧 = 2𝑥 + 3𝑧 + 5𝑥2𝑧
𝜕𝑓

𝜕𝑥
=

Computing the derivatives

Assume we just have m=2 points 𝑥(1), 𝑦(1) and 𝑥(2), 𝑦(2)

𝜕

𝜕𝜃1
𝐸 𝜃 =

𝜕

𝜕𝜃1
෍

𝑖=1

𝑚

𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 2

22

𝑥

𝑦

𝑥(2), 𝑦(2)

𝑥(1), 𝑦(1)

Computing the derivatives

What are the derivatives of the error function with respect to each parameter 𝜃1 and 𝜃2?
𝜕

𝜕𝜃1
𝐸 𝜃 =

𝜕

𝜕𝜃1
෍

𝑖∈days

𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 2

= ෍

𝑖∈days

𝜕

𝜕𝜃1
𝜃1 ⋅ 𝑥

𝑖 + 𝜃2 − 𝑦 𝑖 2

= ෍

𝑖∈days

2 𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 ⋅

𝜕

𝜕𝜃1
𝜃1 ⋅ 𝑥

𝑖

= ෍

𝑖∈days

2 𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 ⋅ 𝑥 𝑖

𝜕

𝜕𝜃2
𝐸 𝜃 = ෍

𝑖∈days

2 𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖

24

Gradient descent

To find a good value of 𝜃, we can repeatedly take steps in the direction of the
negative derivatives for each value

Repeat:

𝜃1 ≔ 𝜃1 − 𝛼
𝜕

𝜕𝜃1
𝐸(𝜃1, 𝜃2)

𝜃2 ≔ 𝜃2 − 𝛼
𝜕

𝜕𝜃1
𝐸(𝜃1, 𝜃2)

where 𝛼 is some small positive number called the step size

This is the gradient decent algorithm, the workhorse of modern machine learning

25

Finding the best 𝜃

To find a good value of 𝜃, we can repeatedly take steps in the direction of the
negative derivatives for each value

Repeat:

𝜃1 ≔ 𝜃1 − 𝛼 ෍

𝑖∈days

2 𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 ⋅ 𝑥 𝑖

𝜃2 ≔ 𝜃2 − 𝛼 ෍

𝑖∈days

2 𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖

where 𝛼 is some small positive number called the step size

This is the gradient decent algorithm, the workhorse of modern machine learning

26

Gradient descent

27

Gradient descent

28

Normalize input by subtracting the mean and

dividing by the standard deviation

Gradient descent – Iteration 1

29

𝜃1

𝜃2

3.0

2.0

1.0

0.1 0.2 0.3𝐸 𝜃
= 1427.53

𝛼

𝜕𝐸 𝜃

𝜕𝜃2

𝜕𝐸 𝜃

𝜕𝜃2

= 0.001 −151.20
−1243.10

Gradient descent – Iteration 2

30

𝜃1

𝜃2

3.0

2.0

1.0

0.1 0.2 0.3𝐸 𝜃
= 1427.53

292.18

𝛼
−67.74
−556.91

Gradient descent – Iteration 3

31

𝜃1

𝜃2

3.0

2.0

1.0

0.1 0.2 0.3𝐸 𝜃
= 1427.53

292.18

64.31

Gradient descent – Iteration 4

32

𝜃1

𝜃2

3.0

2.0

1.0

0.1 0.2 0.3𝐸 𝜃
= 1427.53

292.18

64.31
18.58

Gradient descent – Iteration 5

33

𝜃1

𝜃2

3.0

2.0

1.0

0.1 0.2 0.3𝐸 𝜃
= 1427.53

292.18

64.31
18.58
9.40

Gradient descent – Iteration 10

34

𝜃1

𝜃2

3.0

2.0

1.0

0.1 0.2 0.3𝐸 𝜃
= 1427.53

292.18

64.31
18.58
9.40
7.09

Fitted line in “original” coordinates

35

Important note: requires that we also rescale 𝜃 when un-normalizing

𝜃1

𝜃2

𝜃1
𝜃2

Gradient descent

How do we find the parameters 𝜃1, 𝜃2 that minimize:

𝐸 𝜃 = E(𝜃1, 𝜃2) = ෍

𝑖∈days

𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 2

𝐸(𝜃)

Extensions

What if we want to add additional features, e.g. day of week, instead of just

temperature?

What if we want to use a different loss function instead of squared error (i.e.,

absolute error)?

What if we want to use a non-linear prediction instead of a linear one?

We can easily reason about all these things by adopting some additional notation…

37

Outline

Least squares regression: a simple example

Machine learning notation

Linear regression revisited

Matrix/vector notation and analytic solutions

Implementing linear regression

38

Machine learning

Gradient descent to find the parameters to minimize MSE for a linear model is an

example of a machine learning algorithm

Basic idea: in many domains, it is difficult to hand-build a predictive model, but

easy to collect lots of data; machine learning provides a way to automatically infer

the predictive model from data

39

Hypothesis function

ℎ𝜃 𝑥(𝑛𝑒𝑤)

Machine learning

The basic process (supervised learning):

40

𝑥 1 , 𝑦 1

𝑥 2 , 𝑦 2

𝑥 3 , 𝑦 3

⋮

Prediction

New input

𝑥(𝑛𝑒𝑤)

Predicted

Output

ො𝑦(𝑛𝑒𝑤)

Machine learning

training algorithm

Training data Hypothesis function

(including any

parameter settings)

ො𝑦 = ℎ𝜃 𝑥

Terminology

Input features: 𝑥 𝑖 ∈ ℝ𝑛, 𝑖 = 1,… ,𝑚

E. g. : 𝑥 𝑖 =
High_Temperature 𝑖

Is_Weekday 𝑖

1

Outputs: 𝑦 𝑖 ∈ 𝒴, 𝑖 = 1,… ,𝑚

E. g. : 𝑦 𝑖 ∈ ℝ = Peak_Demand 𝑖

Model parameters: 𝜃 ∈ ℝ𝑛

Hypothesis function: ℎ𝜃: ℝ
𝑛 → 𝒴, predicts output given input

E. g. : ℎ𝜃 𝑥 =෍

𝑗=1

𝑛

𝜃𝑗 ⋅ 𝑥𝑗

41

Terminology

Loss function: ℓ:𝒴 × 𝒴 → ℝ+, measures the difference between a prediction and

an actual output

E. g. : ℓ ො𝑦, 𝑦 = ො𝑦 − 𝑦 2

The canonical machine learning optimization problem:

minimize
𝜃

෍

𝑖=1

𝑚

ℓ ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖

Virtually every machine learning algorithm has this form, just specify

• What is the hypothesis function?

• What is the loss function?

• How do we solve the optimization problem?
42

Example machine learning algorithms

Note: we (machine learning researchers) have not been consistent in naming
conventions, many machine learning algorithms actually only specify some of these
three elements

• Least squares: {linear hypothesis, squared loss, (usually) analytical
solution}

• Linear regression: {linear hypothesis, *, *}

• Support vector machine: {linear or kernel hypothesis, hinge loss, *}

• Neural network: {Composed non-linear function, *, (usually) gradient
descent)

• Decision tree: {Hierarchical axis-aligned halfplanes, *, greedy optimization}

• Naïve Bayes: {Linear hypothesis, joint probability under certain
independence assumptions, analytical solution}

43

Outline

Least squares regression: a simple example

Machine learning notation

Linear regression revisited

Matrix/vector notation and analytic solutions

Implementing linear regression

44

Least squares revisited

Using our new terminology, plus matrix notion, let’s revisit how to solve linear

regression with a squared error loss

Setup:

• Linear hypothesis function: ℎ𝜃 𝑥 = σ𝑗=1
𝑛 𝜃𝑗 ⋅ 𝑥𝑗

• Squared error loss: ℓ ො𝑦, 𝑦 = ො𝑦 − 𝑦 2

• Resulting machine learning optimization problem:

minimize
𝜃

෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝜃𝑗 ⋅ 𝑥𝑗
𝑖
− 𝑦 𝑖

2

≡ minimize
𝜃

𝐸 𝜃

45

Derivative of the least squares objective

Compute the partial derivative with respect to an arbitrary model parameter 𝜃𝑗

𝜕𝐸 𝜃

𝜕𝜃𝑘
=

𝜕

𝜕𝜃𝑘
෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝜃𝑗 ⋅ 𝑥𝑗
𝑖
− 𝑦 𝑖

2

=෍

𝑖=1

𝑚
𝜕

𝜕𝜃𝑘
෍

𝑗=1

𝑛

𝜃𝑗 ⋅ 𝑥𝑗
𝑖
− 𝑦 𝑖

2

= ෍

𝑖=1

𝑚

2 ෍

𝑗=1

𝑛

𝜃𝑗 ⋅ 𝑥𝑗
𝑖
− 𝑦 𝑖

𝜕

𝜕𝜃𝑘
෍

𝑗=1

𝑛

𝜃𝑗 ⋅ 𝑥𝑗
𝑖

=෍

𝑖=1

𝑚

2 ෍

𝑗=1

𝑛

𝜃𝑗 ⋅ 𝑥𝑗
𝑖
− 𝑦 𝑖 𝑥𝑘

𝑖

46

Gradient descent algorithm

1. Initialize 𝜃𝑘 ≔ 0, 𝑘 = 1,… , 𝑛

2. Repeat:

• For 𝑘 = 1,… , 𝑛:

𝜃𝑘 ≔ 𝜃𝑘 − 𝛼෍

𝑖=1

𝑚

2 ෍

𝑗=1

𝑛

𝜃𝑗 ⋅ 𝑥𝑗
𝑖
− 𝑦 𝑖 𝑥𝑘

𝑖

Note: do not actually implement it like this, you’ll want to use the matrix/vector

notation we will over soon

47

Outline

Least squares regression: a simple example

Machine learning notation

Linear regression revisited

Matrix/vector notation and analytic solutions

Implementing linear regression

48

The gradient

It is typically more convenient to work with a vector of all partial derivatives, called

the gradient

For a function 𝑓:ℝ𝑛 → ℝ, the gradient is a vector

𝛻𝜃𝑓 𝜃 =

𝜕𝑓 𝜃

𝜕𝜃1
⋮

𝜕𝑓 𝜃

𝜕𝜃𝑛

∈ ℝ𝑛

49

Gradient in vector notation

We can actually simplify the gradient computation (both notationally and

computationally) substantially using matrix/vector notation

𝜕𝐸 𝜃

𝜕𝜃𝑘
= 2෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝜃𝑗 ⋅ 𝑥𝑗
𝑖
− 𝑦 𝑖 𝑥𝑘

𝑖

⟺ 𝛻𝜃𝐸 𝜃 = 2෍

𝑖=1

𝑚

𝑥 𝑖 𝑥 𝑖 𝑇𝜃 − 𝑦 𝑖

Putting things in this form also make it more clear how to analytically find the

optimal solution for last squares

50

Matrix notation, one level deeper

Let’s define the matrices

𝑋 =

− 𝑥 1 𝑇
−

− 𝑥 2 𝑇
−

⋮

− 𝑥 𝑚 𝑇
−

, 𝑦 =

𝑦 1

𝑦 2

⋮
𝑦 𝑚

Euclidean (L2) norm: 𝑧 2 = σ𝑖 𝑧𝑖
2

1

2 𝑧 2
2 = σ𝑖 𝑧𝑖

2

51

Matrix notation, one level deeper

Let’s define the matrices

𝑋 =

− 𝑥 1 𝑇
−

− 𝑥 2 𝑇
−

⋮

− 𝑥 𝑚 𝑇
−

, 𝑦 =

𝑦 1

𝑦 2

⋮
𝑦 𝑚

Euclidean (L2) norm: 𝑧 2 = σ𝑖 𝑧𝑖
2

1

2 𝑧 2
2 = σ𝑖 𝑧𝑖

2

52

Gradient in linear algebra notation

We can actually simplify the gradient computation (both notationally and

computationally) substantially using matrix/vector notation

𝐸 𝜃 = σ𝑖=1
𝑚 σ𝑗=1

𝑛 𝜃𝑗 ⋅ 𝑥𝑗
𝑖
− 𝑦 𝑖

2
𝛻𝜃𝐸 𝜃 = 2σ𝑖=1

𝑚 𝑥 𝑖 𝑥 𝑖 𝑇𝜃 − 𝑦 𝑖

𝐸 𝜃 = 𝑋𝜃 − 𝑦 2
2 𝛻𝜃𝐸 𝜃 = 2𝑋𝑇(𝑋𝜃 − 𝑦)

Putting things in this form also make it more clear how to analytically find the

optimal solution for last squares

53

Solving least squares

Gradient also gives a condition for optimality:

• Gradient must equal zero

Solving for 𝛻𝜃𝐸 𝜃 = 0:

2𝑋𝑇(𝑋𝜃 − 𝑦) = 0

These are known as the normal equations an extremely convenient closed-form

solution for least squares
54

Solving least squares

Gradient also gives a condition for optimality:

• Gradient must equal zero

Solving for 𝛻𝜃𝐸 𝜃 = 0:

2෍

𝑖=1

𝑚

𝑥 𝑖 𝑥 𝑖 𝑇𝜃 − 𝑦 𝑖 = 0

⇒ ෍

𝑖=1

𝑚

𝑥 𝑖 𝑥 𝑖 𝑇 𝜃 −෍

𝑖=1

𝑚

𝑥 𝑖 𝑦 𝑖 = 0

⇒ 𝜃⋆ = ෍

𝑖=1

𝑚

𝑥 𝑖 𝑥 𝑖 𝑇

−1

෍

𝑖=1

𝑚

𝑥 𝑖 𝑦 𝑖

55

Example: electricity demand

Returning to our electricity demand example:

𝑥 𝑖 = High_Temperature 𝑖

1
, 𝜃⋆ = 𝑋𝑇𝑋 −1𝑋𝑇𝑦 =

0.046
−1.574

56

Example: electricity demand

Returning to our electricity demand example:

𝑥 𝑖 =
High_Temperature 𝑖

Is_Weekday 𝑖

1

, 𝜃⋆ = 𝑋𝑇𝑋 −1𝑋𝑇𝑦 =
0.047
0.225
−1.803

57

Outline

Least squares regression: a simple example

Machine learning notation

Linear regression revisited

Matrix/vector notation and analytic solutions

Implementing linear regression

58

Manual implementation of linear regression

Create data matrices:

Compute solution:

Make predictions:

59

initialize X matrix and y vector

X = np.array([df["Temp"], df["IsWeekday"], np.ones(len(df))]).T

y = df_summer["Load"].values

solve least squares

theta = np.linalg.solve(X.T @ X, X.T @ y)

print(theta)

[0.04747948 0.22462824 -1.80260016]

predict on new data

Xnew = np.array([[77, 1, 1], [80, 0, 1]])

ypred = Xnew @ theta

print(ypred)

[2.07794778 1.99575797]

Scikit-learn

By far the most popular machine learning library in Python is the scikit-learn library

(http://scikit-learn.org/)

Reasonable (usually) implementation of many different learning algorithms, usually

fast enough for small/medium problems

Important: you need to understand the very basics of how these algorithms work in

order to use them effectively

Sadly, a lot of data science in practice seems to be driven by the default

parameters for scikit-learn classifiers…

60

http://scikit-learn.org/

Linear regression in scikit-learn

Fit a model and predict on new data

Inspect internal model coefficients

61

from sklearn.linear_model import LinearRegression

don't include constant term in X

X = np.array([df_summer["Temp"], df_summer["IsWeekday"]]).T

model = LinearRegression(fit_intercept=True, normalize=False)

model.fit(X, y)

predict on new data

Xnew = np.array([[77, 1], [80, 0]])

model.predict(Xnew)

[2.07794778 1.99575797]

print(model.coef_, model.intercept_)

[0.04747948 0.22462824] -1.80260016

Scikit-learn-like model, manually

We can easily implement a class that contains a scikit-learn-like interface

62

class MyLinearRegression:

def __init__(self, fit_intercept=True):

self.fit_intercept = fit_intercept

def fit(self, X, y):

if self.fit_intercept:

X = np.hstack([X, np.ones((X.shape[0],1))])

self.coef_ = np.linalg.solve(X.T @ X, X.T @ y)

if self.fit_intercept:

self.intercept_ = self.coef_[-1]

self.coef_ = self.coef_[:-1]

def predict(self, X):

pred = X @ self.coef_

if self.fit_intercept:

pred += self.intercept_

return pred

