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A simple example: predicting electricity use

What will peak power consumption be in Pittsburgh tomorrow?

Difficult to build an “a priori” model from first principles to answer this question

But, relatively easy to record past days of consumption, plus additional features 

that affect consumption (i.e., weather)

6

Date High Temperature (F) Peak Demand (GW)

2011-06-01 84.0 2.651

2011-06-02 73.0 2.081

2011-06-03 75.2 1.844

2011-06-04 84.9 1.959

… … …



Plot of consumption vs. temperature

Plot of high temperature vs. peak demand for summer months (June – August) for 

past six years
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Hypothesis: linear model

Let’s suppose that the peak demand approximately fits a linear model
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Hypothesis: linear model

Let’s suppose that the peak demand approximately fits a linear model

Peak_Demand ≈ 𝜃1 ⋅ High_Temperature + 𝜃2

Here 𝜃1 is the “slope” of the line, and 𝜃2 = is the intercept
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Making predictions

Importantly, our model also lets us make predictions about new days

What will the peak demand be tomorrow?

If we know the high temperature will be 72 degrees (ignoring for now that this is 

also a prediction), then we can predict peak demand to be:

Predicted_Peak_Demand = 𝜃1 ⋅ 72 + 𝜃2 = 1.821 GW

Equivalent to just “finding the point on the line”
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Predicted output for each data point

Peak_Demand(𝑖)

Predicted_Peak_Demand 𝑖 = 𝜃1 ⋅ High_Temperature
𝑖 + 𝜃2
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Hypothesis: linear model

Peak_Demand(𝑖)

Predicted_Peak_Demand 𝑖 = 𝜃1 ⋅ High_Temperature
𝑖 + 𝜃2
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Hypothesis: linear model

Let’s suppose that the peak demand approximately fits a linear model

Predicted_Peak_Demand = 𝜃1 ⋅ High_Temperature + 𝜃2

Here 𝜃1 is the “slope” of the line, and 𝜃2 is the intercept

How do we find a “good” fit to the data?

Many possibilities, but natural objective is to minimize some difference between this line 
and the observed data, e.g. squared loss

𝐸 𝜃 = ෍

𝑖∈days

Predicted_Peak_Demand 𝑖 − Peak_Demand 𝑖 2

𝐸 𝜃 = ෍

𝑖∈days

𝜃1 ⋅ High_Temperature
𝑖 + 𝜃2 − Peak_Demand 𝑖 2
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How do we find parameters?

How do we find the parameters 𝜃1, 𝜃2 that minimize the function

𝐸 𝜃 = E 𝜃1, 𝜃2 = ෍

𝑖∈days

𝜃1 ⋅ High_Temperature
𝑖 + 𝜃2 − Peak_Demand 𝑖 2

≡ σ𝑖∈days 𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 2

14
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Peak_Demand
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High_Temperature



How do we find parameters?

How do we find the parameters 𝜃1, 𝜃2 that minimize the function

𝐸 𝜃 = E 𝜃1, 𝜃2 = ෍

𝑖∈days

𝜃1 ⋅ High_Temperature
𝑖 + 𝜃2 − Peak_Demand 𝑖 2

≡ σ𝑖∈days 𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 2
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𝑚
𝑏

How do we find parameters?

How do we find the parameters 𝜃1, 𝜃2 that minimize the function

𝐸 𝜃 = E 𝜃1, 𝜃2 = ෍

𝑖∈days

𝜃1 ⋅ High_Temperature
𝑖 + 𝜃2 − Peak_Demand 𝑖 2

≡ σ𝑖∈days 𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 2

16

𝑥
High_Temperature

𝜃1
𝜃2

𝐸(𝜃)

Peak_Demand

𝑦



𝜃1

𝜃2

𝜃1
𝜃2

Gradient descent

How do we find the parameters 𝜃1, 𝜃2 that minimize: 

𝐸 𝜃 = E(𝜃1, 𝜃2) = ෍

𝑖∈days

𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 2

𝐸(𝜃)



𝜃1

𝜃2

𝜃1
𝜃2

Gradient descent

How do we find the parameters 𝜃1, 𝜃2 that minimize: 

𝐸 𝜃 = E(𝜃1, 𝜃2) = ෍

𝑖∈days

𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 2

𝐸(𝜃)



Gradient descent

To find a good value of 𝜃, we can repeatedly take steps in the direction of the 
negative derivatives for each value

Repeat:

𝜃1 ≔ 𝜃1 − 𝛼
𝜕

𝜕𝜃1
𝐸(𝜃1, 𝜃2)

𝜃2 ≔ 𝜃2 − 𝛼
𝜕

𝜕𝜃1
𝐸(𝜃1, 𝜃2)

where 𝛼 is some small positive number called the step size

This is the gradient decent algorithm, the workhorse of modern machine learning
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Computing gradients (partial derivatives)

How do we find the parameters 𝜃1, 𝜃2 that minimize the function

𝐸 𝜃 = E 𝜃1, 𝜃2 = ෍

𝑖∈days

𝜃1 ⋅ High_Temperature
𝑖 + 𝜃2 − Peak_Demand 𝑖 2

≡ σ𝑖∈days 𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 2

General idea: suppose we want to minimize some function 𝑓 𝜃

Derivative is slope of the function, so negative derivative points “downhill” 20



Calculus worksheet

A. 𝑓 𝑥 = 𝑥2 + 5𝑥3
𝑑𝑓

𝑑𝑥
=

B. 𝑓 𝑥 = (3 − 5𝑥)2
𝑑𝑓

𝑑𝑥
=

C. 𝑓 𝑥, 𝑧 = 2𝑥 + 3𝑧 + 5𝑥2𝑧
𝜕𝑓

𝜕𝑧
=

D. 𝑓 𝑥, 𝑧 = 2𝑥 + 3𝑧 + 5𝑥2𝑧
𝜕𝑓

𝜕𝑥
=



Computing the derivatives

Assume we just have m=2 points 𝑥(1), 𝑦(1) and 𝑥(2), 𝑦(2)

𝜕

𝜕𝜃1
𝐸 𝜃 =

𝜕

𝜕𝜃1
෍

𝑖=1

𝑚

𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 2
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𝑥

𝑦

𝑥(2), 𝑦(2)

𝑥(1), 𝑦(1)



Computing the derivatives

What are the derivatives of the error function with respect to each parameter 𝜃1 and 𝜃2?
𝜕

𝜕𝜃1
𝐸 𝜃 =

𝜕

𝜕𝜃1
෍

𝑖∈days

𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 2

= ෍

𝑖∈days

𝜕

𝜕𝜃1
𝜃1 ⋅ 𝑥

𝑖 + 𝜃2 − 𝑦 𝑖 2

= ෍

𝑖∈days

2 𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 ⋅

𝜕

𝜕𝜃1
𝜃1 ⋅ 𝑥

𝑖

= ෍

𝑖∈days

2 𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 ⋅ 𝑥 𝑖

𝜕

𝜕𝜃2
𝐸 𝜃 = ෍

𝑖∈days

2 𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖
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Gradient descent

To find a good value of 𝜃, we can repeatedly take steps in the direction of the 
negative derivatives for each value

Repeat:

𝜃1 ≔ 𝜃1 − 𝛼
𝜕

𝜕𝜃1
𝐸(𝜃1, 𝜃2)

𝜃2 ≔ 𝜃2 − 𝛼
𝜕

𝜕𝜃1
𝐸(𝜃1, 𝜃2)

where 𝛼 is some small positive number called the step size

This is the gradient decent algorithm, the workhorse of modern machine learning
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Finding the best 𝜃

To find a good value of 𝜃, we can repeatedly take steps in the direction of the 
negative derivatives for each value

Repeat:

𝜃1 ≔ 𝜃1 − 𝛼 ෍

𝑖∈days

2 𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 ⋅ 𝑥 𝑖

𝜃2 ≔ 𝜃2 − 𝛼 ෍

𝑖∈days

2 𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖

where 𝛼 is some small positive number called the step size

This is the gradient decent algorithm, the workhorse of modern machine learning
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Gradient descent

27



Gradient descent

28

Normalize input by subtracting the mean and 

dividing by the standard deviation



Gradient descent – Iteration 1
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𝜃1

𝜃2

3.0

2.0

1.0

0.1 0.2 0.3𝐸 𝜃
= 1427.53

𝛼

𝜕𝐸 𝜃

𝜕𝜃2

𝜕𝐸 𝜃

𝜕𝜃2

= 0.001 −151.20
−1243.10



Gradient descent – Iteration 2

30

𝜃1

𝜃2

3.0

2.0

1.0

0.1 0.2 0.3𝐸 𝜃
= 1427.53

292.18

𝛼
−67.74
−556.91



Gradient descent – Iteration 3

31

𝜃1

𝜃2

3.0

2.0

1.0

0.1 0.2 0.3𝐸 𝜃
= 1427.53

292.18

64.31



Gradient descent – Iteration 4

32

𝜃1

𝜃2

3.0

2.0

1.0

0.1 0.2 0.3𝐸 𝜃
= 1427.53

292.18

64.31
18.58



Gradient descent – Iteration 5

33

𝜃1

𝜃2

3.0

2.0

1.0

0.1 0.2 0.3𝐸 𝜃
= 1427.53

292.18

64.31
18.58
9.40



Gradient descent – Iteration 10

34

𝜃1

𝜃2

3.0

2.0

1.0

0.1 0.2 0.3𝐸 𝜃
= 1427.53

292.18

64.31
18.58
9.40
7.09



Fitted line in “original” coordinates
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Important note: requires that we also rescale 𝜃 when un-normalizing



𝜃1

𝜃2

𝜃1
𝜃2

Gradient descent

How do we find the parameters 𝜃1, 𝜃2 that minimize: 

𝐸 𝜃 = E(𝜃1, 𝜃2) = ෍

𝑖∈days

𝜃1 ⋅ 𝑥
𝑖 + 𝜃2 − 𝑦 𝑖 2

𝐸(𝜃)



Extensions

What if we want to add additional features, e.g. day of week, instead of just 

temperature?

What if we want to use a different loss function instead of squared error (i.e., 

absolute error)?

What if we want to use a non-linear prediction instead of a linear one?

We can easily reason about all these things by adopting some additional notation…
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Machine learning

Gradient descent to find the parameters to minimize MSE for a linear model is an 

example of a machine learning algorithm

Basic idea: in many domains, it is difficult to hand-build a predictive model, but 

easy to collect lots of data; machine learning provides a way to automatically infer 

the predictive model from data

39



Hypothesis function

ℎ𝜃 𝑥(𝑛𝑒𝑤)

Machine learning

The basic process (supervised learning):

40

𝑥 1 , 𝑦 1

𝑥 2 , 𝑦 2

𝑥 3 , 𝑦 3

⋮

Prediction

New input

𝑥(𝑛𝑒𝑤)

Predicted

Output

ො𝑦(𝑛𝑒𝑤)

Machine learning 

training algorithm

Training data Hypothesis function 

(including any 

parameter settings)

ො𝑦 = ℎ𝜃 𝑥



Terminology

Input features: 𝑥 𝑖 ∈ ℝ𝑛, 𝑖 = 1,… ,𝑚

E. g. : 𝑥 𝑖 =
High_Temperature 𝑖

Is_Weekday 𝑖

1

Outputs: 𝑦 𝑖 ∈ 𝒴, 𝑖 = 1,… ,𝑚

E. g. : 𝑦 𝑖 ∈ ℝ = Peak_Demand 𝑖

Model parameters: 𝜃 ∈ ℝ𝑛

Hypothesis function: ℎ𝜃: ℝ
𝑛 → 𝒴, predicts output given input

E. g. : ℎ𝜃 𝑥 =෍

𝑗=1

𝑛

𝜃𝑗 ⋅ 𝑥𝑗

41



Terminology

Loss function: ℓ:𝒴 × 𝒴 → ℝ+, measures the difference between a prediction and 

an actual output

E. g. : ℓ ො𝑦, 𝑦 = ො𝑦 − 𝑦 2

The canonical machine learning optimization problem:

minimize
𝜃

෍

𝑖=1

𝑚

ℓ ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖

Virtually every machine learning algorithm has this form, just specify

• What is the hypothesis function?

• What is the loss function?

• How do we solve the optimization problem?
42



Example machine learning algorithms

Note: we (machine learning researchers) have not been consistent in naming 
conventions, many machine learning algorithms actually only specify some of these 
three elements

• Least squares: {linear hypothesis, squared loss, (usually) analytical 
solution}

• Linear regression: {linear hypothesis, *, *}

• Support vector machine: {linear or kernel hypothesis, hinge loss, *}

• Neural network: {Composed non-linear function, *, (usually) gradient 
descent)

• Decision tree: {Hierarchical axis-aligned halfplanes, *, greedy optimization}

• Naïve Bayes: {Linear hypothesis, joint probability under certain 
independence assumptions, analytical solution}

43
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Least squares revisited

Using our new terminology, plus matrix notion, let’s revisit how to solve linear 

regression with a squared error loss

Setup:

• Linear hypothesis function: ℎ𝜃 𝑥 = σ𝑗=1
𝑛 𝜃𝑗 ⋅ 𝑥𝑗

• Squared error loss: ℓ ො𝑦, 𝑦 = ො𝑦 − 𝑦 2

• Resulting machine learning optimization problem:

minimize
𝜃

෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝜃𝑗 ⋅ 𝑥𝑗
𝑖
− 𝑦 𝑖

2

≡ minimize
𝜃

𝐸 𝜃

45



Derivative of the least squares objective

Compute the partial derivative with respect to an arbitrary model parameter 𝜃𝑗

𝜕𝐸 𝜃

𝜕𝜃𝑘
=

𝜕

𝜕𝜃𝑘
෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝜃𝑗 ⋅ 𝑥𝑗
𝑖
− 𝑦 𝑖

2

=෍

𝑖=1

𝑚
𝜕

𝜕𝜃𝑘
෍

𝑗=1

𝑛

𝜃𝑗 ⋅ 𝑥𝑗
𝑖
− 𝑦 𝑖

2

= ෍

𝑖=1

𝑚

2 ෍

𝑗=1

𝑛

𝜃𝑗 ⋅ 𝑥𝑗
𝑖
− 𝑦 𝑖

𝜕

𝜕𝜃𝑘
෍

𝑗=1

𝑛

𝜃𝑗 ⋅ 𝑥𝑗
𝑖

=෍

𝑖=1

𝑚

2 ෍

𝑗=1

𝑛

𝜃𝑗 ⋅ 𝑥𝑗
𝑖
− 𝑦 𝑖 𝑥𝑘

𝑖

46



Gradient descent algorithm

1. Initialize 𝜃𝑘 ≔ 0, 𝑘 = 1,… , 𝑛

2. Repeat:

• For 𝑘 = 1,… , 𝑛:

𝜃𝑘 ≔ 𝜃𝑘 − 𝛼෍

𝑖=1

𝑚

2 ෍

𝑗=1

𝑛

𝜃𝑗 ⋅ 𝑥𝑗
𝑖
− 𝑦 𝑖 𝑥𝑘

𝑖

Note: do not actually implement it like this, you’ll want to use the matrix/vector 

notation we will over soon

47



Outline

Least squares regression: a simple example

Machine learning notation

Linear regression revisited

Matrix/vector notation and analytic solutions

Implementing linear regression

48



The gradient

It is typically more convenient to work with a vector of all partial derivatives, called 

the gradient

For a function 𝑓:ℝ𝑛 → ℝ, the gradient is a vector

𝛻𝜃𝑓 𝜃 =

𝜕𝑓 𝜃

𝜕𝜃1
⋮

𝜕𝑓 𝜃

𝜕𝜃𝑛

∈ ℝ𝑛

49



Gradient in vector notation

We can actually simplify the gradient computation (both notationally and 

computationally) substantially using matrix/vector notation

𝜕𝐸 𝜃

𝜕𝜃𝑘
= 2෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝜃𝑗 ⋅ 𝑥𝑗
𝑖
− 𝑦 𝑖 𝑥𝑘

𝑖

⟺ 𝛻𝜃𝐸 𝜃 = 2෍

𝑖=1

𝑚

𝑥 𝑖 𝑥 𝑖 𝑇𝜃 − 𝑦 𝑖

Putting things in this form also make it more clear how to analytically find the 

optimal solution for last squares

50



Matrix notation, one level deeper

Let’s define the matrices

𝑋 =

− 𝑥 1 𝑇
−

− 𝑥 2 𝑇
−

⋮

− 𝑥 𝑚 𝑇
−

, 𝑦 =

𝑦 1

𝑦 2

⋮
𝑦 𝑚

Euclidean (L2) norm: 𝑧 2 = σ𝑖 𝑧𝑖
2

1

2 𝑧 2
2 = σ𝑖 𝑧𝑖

2
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Matrix notation, one level deeper

Let’s define the matrices

𝑋 =

− 𝑥 1 𝑇
−

− 𝑥 2 𝑇
−

⋮

− 𝑥 𝑚 𝑇
−

, 𝑦 =

𝑦 1

𝑦 2

⋮
𝑦 𝑚

Euclidean (L2) norm: 𝑧 2 = σ𝑖 𝑧𝑖
2

1

2 𝑧 2
2 = σ𝑖 𝑧𝑖

2

52



Gradient in linear algebra notation

We can actually simplify the gradient computation (both notationally and 

computationally) substantially using matrix/vector notation

𝐸 𝜃 = σ𝑖=1
𝑚 σ𝑗=1

𝑛 𝜃𝑗 ⋅ 𝑥𝑗
𝑖
− 𝑦 𝑖

2
𝛻𝜃𝐸 𝜃 = 2σ𝑖=1

𝑚 𝑥 𝑖 𝑥 𝑖 𝑇𝜃 − 𝑦 𝑖

𝐸 𝜃 = 𝑋𝜃 − 𝑦 2
2 𝛻𝜃𝐸 𝜃 = 2𝑋𝑇(𝑋𝜃 − 𝑦)

Putting things in this form also make it more clear how to analytically find the 

optimal solution for last squares

53



Solving least squares

Gradient also gives a condition for optimality:

• Gradient must equal zero

Solving for 𝛻𝜃𝐸 𝜃 = 0:

2𝑋𝑇(𝑋𝜃 − 𝑦) = 0

These are known as the normal equations an extremely convenient closed-form 

solution for least squares
54



Solving least squares

Gradient also gives a condition for optimality:

• Gradient must equal zero

Solving for 𝛻𝜃𝐸 𝜃 = 0:

2෍

𝑖=1

𝑚

𝑥 𝑖 𝑥 𝑖 𝑇𝜃 − 𝑦 𝑖 = 0

⇒ ෍

𝑖=1

𝑚

𝑥 𝑖 𝑥 𝑖 𝑇 𝜃 −෍

𝑖=1

𝑚

𝑥 𝑖 𝑦 𝑖 = 0

⇒ 𝜃⋆ = ෍

𝑖=1

𝑚

𝑥 𝑖 𝑥 𝑖 𝑇

−1

෍

𝑖=1

𝑚

𝑥 𝑖 𝑦 𝑖
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Example: electricity demand

Returning to our electricity demand example:

𝑥 𝑖 = High_Temperature 𝑖

1
, 𝜃⋆ = 𝑋𝑇𝑋 −1𝑋𝑇𝑦 =

0.046
−1.574
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Example: electricity demand

Returning to our electricity demand example:

𝑥 𝑖 =
High_Temperature 𝑖

Is_Weekday 𝑖

1

, 𝜃⋆ = 𝑋𝑇𝑋 −1𝑋𝑇𝑦 =
0.047
0.225
−1.803
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Outline

Least squares regression: a simple example

Machine learning notation

Linear regression revisited

Matrix/vector notation and analytic solutions

Implementing linear regression
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Manual implementation of linear regression

Create data matrices:

Compute solution:

Make predictions:

59

# initialize X matrix and y vector

X = np.array([df["Temp"], df["IsWeekday"], np.ones(len(df))]).T

y = df_summer["Load"].values

# solve least squares

theta = np.linalg.solve(X.T @ X, X.T @ y)

print(theta)

# [ 0.04747948 0.22462824 -1.80260016]

# predict on new data

Xnew = np.array([[77, 1, 1], [80, 0, 1]])

ypred = Xnew @ theta

print(ypred)

# [ 2.07794778 1.99575797]



Scikit-learn

By far the most popular machine learning library in Python is the scikit-learn library 

(http://scikit-learn.org/)

Reasonable (usually) implementation of many different learning algorithms, usually 

fast enough for small/medium problems

Important: you need to understand the very basics of how these algorithms work in 

order to use them effectively

Sadly, a lot of data science in practice seems to be driven by the default 

parameters for scikit-learn classifiers…
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http://scikit-learn.org/


Linear regression in scikit-learn

Fit a model and predict on new data

Inspect internal model coefficients

61

from sklearn.linear_model import LinearRegression

# don't include constant term in X

X = np.array([df_summer["Temp"], df_summer["IsWeekday"]]).T

model = LinearRegression(fit_intercept=True, normalize=False)

model.fit(X, y)

# predict on new data

Xnew = np.array([[77, 1], [80, 0]])

model.predict(Xnew)

# [ 2.07794778 1.99575797]

print(model.coef_, model.intercept_)

# [ 0.04747948 0.22462824]  -1.80260016



Scikit-learn-like model, manually

We can easily implement a class that contains a scikit-learn-like interface
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class MyLinearRegression:

def __init__(self, fit_intercept=True):

self.fit_intercept = fit_intercept

def fit(self, X, y):

if self.fit_intercept:

X = np.hstack([X, np.ones((X.shape[0],1))])

self.coef_ = np.linalg.solve(X.T @ X, X.T @ y)

if self.fit_intercept:

self.intercept_ = self.coef_[-1]

self.coef_ = self.coef_[:-1]

def predict(self, X):

pred = X @ self.coef_ 

if self.fit_intercept:

pred += self.intercept_ 

return pred


