
15-388/688 - Practical Data Science:
Evaluating ML models

J. Zico Kolter
Carnegie Mellon University

Spring 2018

1

Outline

Evaluating machine learning algorithms

Classification metrics

2

A common strategy for evaluating algorithms

1. Divide data set into training and holdout sets

2. Train different algorithms (or a single algorithm with different
hyperparameter settings) using the training set

3. Evaluate performance of all the algorithms on the holdout set, and
report the best performance (e.g., lowest holdout error)

What is wrong with this?

3

Issues with the previous evaluation

Even though we used a training/holdout split to fit the parameters, we are
still effectively fitting the hyperparameters to the holdout set

Imagine an algorithm that ignores the training set and makes random
predictions; given a large enough hyperparameter search (e.g., over
random seed), we could get perfect holdout performance

4

What to do instead

1. Divide data into training set, holdout set, and test set

2. Train algorithm on training set (i.e., to learn parameters), use holdout
set to select hyperparameters

3. (Optional) retrain system on training + holdout

4. Evaluate performance on test set

5

Test set
(e.g., 30%)

Training set
(e.g. 50%)

All data

Holdout / validation
set (e.g. 20%)

In practice…

“Leakage” of test set performance into algorithm design decisions in
almost always a reality when dealing with any fixed data set (in theory, as
soon as you look at test set performance once, you have corrupted that
data as a valid set set)

This is true in research as well as in data science practice

The best solutions: evaluate your system “in the wild” (where it will see
truly novel examples) as often a possible; recollect data if you suspect
overfitting to test set; look at test set performance sparingly

An interesting and very active area of research: adaptive data analysis
(differential privacy to theoretically guarantee no overfitting)

6

Outline

Evaluating machine learning algorithms

Classification metrics

7

Classification metrics

So far, we have considered accuracy (0/1 loss) as the primary method for
evaluating classifiers

However, sometimes the benefits for correctly classifying positive and
negative examples are different, as are the costs for predictive a positive
example to be negative, and vice versa

In cancer dataset, it is a very different thing (in terms of real-world effects)
to predict that an actually malignant tumor is benign, versus predicting a
benign tumor is malignant

8

Confusion matrix

A confusion matrix explicitly lists the number of examples for each actual
class and each prediction

Can compute these (and all associated metrics) on training / holdout /
testing sets, but we’ll just show examples on training sets here

9

Predicted
Positive

Predicted
Negative

Actual
Positive True	Positive False Negative

Actual	
Negative False	Positive True	negative

import sklearn.metrics
sklearn.metrics.confusion_matrix(y, clf.predict(X))

Derived quantities

Several common metrics are associated with entries of the confusion
matrix (TP = true positive, FP = false positive, TN = true negative, TP =
true negative)

TP Rate also called Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

FP Rate = FP
FP + TN

Precision = TP
TP + FP

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Different metrics (and man others) are standard for different domains

10

Changing the prediction threshold

Classifiers are implicitly trained around a “threshold” of zero (positive
hypothesis means predict positive, negative means predict negative)

But there is no reason to use only this threshold when we want to make
predictions (may want to “overpredict” one class or the other)

Key idea: by sorting the hypothesis function outputs, and adjusting the
threshold at which we call something positive or negative, we can sweep
out all possible classifications that a classifier can produce

11

Example thresholds

Sorted hypothesis function outputs (assume 10 total examples, 5 total
positive examples):

sorted(ℎ& 𝑥 () =
10
9

8.5
⋮

, 𝑦 =
+1
−1
+1
⋮

TP Rate = 0.0, FP Rate = 0.0

TP Rate = 0.2, FP Rate = 0.0

TP Rate = 0.2, FP Rate = 0.2

TP Rate = 0.4, FP Rate = 0.2

12

ROC Curve

If we plot the true positive rate versus the false positive rate for this
procedure, we get a figure known as an ROC (receiver operating
characteristic) curve

13

Precision recall curves

We can perform similar operations for other metrics, to for e.g. a
precision-recall curve (plot of recall vs. precision as threshold varies)

14

